High-resolution spectroscopy of cation-helium complexes

Oskar Asvany and Stephan Schlemmer

I. Physikalisches Institut

Universität zu Köln

virtual SPIG 2020, August 24-28, 2020

JPCL **10**, 5325 (2019) Front. Chem. **8**, 462 (2020)

Mol. Phys. **113**, 2320 (2015)

PCCP **21**, 3440 (2018) JPC **103**, 1297 (1995)

- typically weak van-der-Waals bonds
- challenging due to large amplitude motions
- some are of astrophysical importance

IR spectroscopy of H⁺-He_n

short story of HHe⁺

What about HHe_n^+ , n>1 ?

HHe₂⁺ HHe₃⁺

HHe₆⁺

mass spectra reveal special stability for n=2, 6, 13

Z. Phys. D **23**, 181 (1992) Chem Phys Chem **14**, 227 (2013) Mol. Phys. **117**, 1559 (2019)

but no spectroscopic data available ...

.. except HAr_n⁺: JCP **145**, 231101 (2016)

IR predissociation spectroscopy of HHe_n^+ , n>2

HHe₂⁺ is strongly bound chromophore, all outer He atoms loosely bound

use 4 K trap machines

production of HHe_n^+ in the 4K cold ion trap

FELIX free electron laser: ~ 67 – 3300 cm⁻¹ FWHM ~ 0.5%

Nijmegen, the Netherlands

4 K trap machine FELion

ion trap is easy to operate

4 K trap machine COLTRAP @ Köln

high-resolution laser: QCL

IR spectra of HHe_n⁺ with high-resolution laser (QCL)

Short lifetime of ~ 5ps

leads to severe broadening

n=3 laser coverage n=4 n=5 n=6 1240 1260 1280 1300 1320 1340 wavenumber / cm⁻¹

--- measurement FELIX

- --- measurement high-res laser
- --- simulation with PGOPHER
- --- ab initio (Budapest)

Outlook for HHe₃⁺

1) look at bending motion

2) do rotational spectroscopy by double resonance

i) rotational transitions NOT affected by lifetime broadening!!

HHe⁺

ii) we know it works!

Phys. Rev. Lett. 121, 143001 (2018)

PCCP 21, 3440 (2019)

rotational- predissociation spectroscopy

PCCP **21**, 3440 (2019)

measured 11 rotational lines in high resolution

I	1	1		•
J —	Ŧ	1	¢-	•

Parameters	$v_1 = 0$		
В	8698.1947(16)		
D	0.318741(46)		
$H/10^{-5}$	10.03(6)		
$L/10^{-7}$	-2.681(39)		
$M/10^{-10}$	4.0(1)		
$N/10^{-13}$	-3.2(1)		

But what about HHe_2^+ ?

- HHe_2^+ is a fundamental three-nucleus-four-electron system
- it is similar to the CO₂ molecule: ¹∑ electronic ground state, only even-J states exist
- HHe₂⁺ cannot be destroyed by its fundamental vibrations
- used another action spectroscopy method (so-called LIICG method) to record rovibrational transitions LIICG method : Appl. Phys. B **114**, 203 (2014)

What about HHe₂⁺ ?

determined bond distance experimentally $r_e = 0.924$ Å

Take home message

 HHe_n^+ are interesting species for **IR spectroscopy**, potentially some exhibit large amplitude motion

High-resolution **rotational spectroscopy** of cation-helium complexes can be achieved via double resonance, and allow interesting discoveries

Cologne spectroscopy group

Stephan SchlemmerAttila G. CsászárFunding: DFG via SFB 956 project B2 and AS 319/2-2

