

Plasma-Wall Interactions in Wendelstein 7-X Operating with Graphite Divertor

27.08.2020 I S. BREZINSEK AND THE W7-X TEAM

30th SPIG conference | Beograd | 25-28th August 2020

Contributors

S. Brezinsek¹, M. Jakubowski², R. König², O. Schmitz³, M. Balden⁴, R. Brakel², B. Butterschön¹, C.P. Dhard², T. Dittmar¹, P. Drewelow², P. Drews¹, F. Effenberg³, M. Endler², O. Ford², G. Fuchert², Y. Gao¹, A. Goriaev⁵, D. Gradic², O. Grulke², A. Kirschner¹, A. Knieps¹, P. Kornejew², T. Kremeyer³, M. Krychowiak², S. Masuzaki⁶, M. Mayer⁴, G. Motojima⁶, R. Neu⁴, D. Naujoks², J. Oelmann¹, M. Otte², H. Niemann², M. Rack¹, M. Rasinski¹, J. Romazanov¹, G. Schlisio², K. Schmid⁴, S. Sereda¹, M. Slezcka⁷, T. Sun Pedersen², E. Wang¹, T. Wauters⁵, U. Wenzel², V. Winters², R. Yi¹, D. Zhao¹, and the W7-X team^{*}

¹Forschungszentrum Jülich, Institute of Energy and Climate Research – Plasma Physics, TEC, 52425 Jülich, Germany
 ²Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany
 ³University of Wisconsin - Madison, Engineering Physics, Madison, WI 53706, USA
 ⁴Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany
 ⁵Laboratory for Plasma Physics, LPP-ERM/KMS, TEC, Brussels, Belgium
 ⁶National Institute for Fusion Science, Toki, Japan
 ⁷University of Szczecin, Institute of Physics, Szczecin, Poland

^{*} see T. Klinger et al., Nucl. Fusion 59 (2019) 112004

Wendelstein 7-X: Optimised Stellarator Design

plasma volume: 30 m³

non-planar NbTi coils: 50

planar NbTi coils: 20

plasma vessel: 80 m³ in-vessel components: 265 m²

> machine height: 4.5 m machine diameter: 16 m device mass: 735 t cold mass at 3.4 K: 435 t

[O. Grulke et al. EPS2019]

cryostat vessel insulation: 420 m³

ports: 254 shapes: 120

NbTi bus bars: 113 central support ring elements: 10

Wendelstein 7-X: Capabilities

- Magnetic field of 2.5 T
- Major Radius: **5.5 m** / Minor Radius: **0.53 m**
- Heating power: 7.5 MW ECRH / 3.4 MW NBI
- Plasma volume: 30 m³

Island divertor to optimise power and particle exhaust as well as to screen impurities

Divertor operation

- Complete set of in-vessel PFCs
- No active cooling of graphite PFCs
- Divertor OP A: ~3776 s (He+H plasma)
- Divertor OP B: ~9054 s (mainly H plasma)
- Plasma duration: **≤100 s**
- Input energy: **≤0.2 GJ**

[T.S. Pedersen et al. PPCF 2019]

Wendelstein 7-X: Plasma-Facing Components

Island Divertor with Test Divertor Unit (TDU)

- 5 modules with 2 halfs
- Divertor material: fine grain graphite
- Divertor area: **19** (25) **m**²
- Max. divertor heat load: **10 MW/m**²

First wall coverage (FW)

- Main FW wall area: **45** m² with C
 - 15 m² up to 0.5 MW/m²
 - 30 m² up to 0.25 MW/m²
- Recessed wall area: 70 m² with SS
 - 70 m² up to 0.2 MW/m²
- Nominal wall temperature: RT

[CP Dhard et al.]

Wendelstein 7-X: Island Divertor Concept

2D cut: magnetic topology

Forschungszentrum

Wendelstein 7-X: Island Divertor Concept

(edge iota 5/5)

IPP

JÜLICH

Forschungszentrum

[EMC3-EIRENE predictions: Y Feng, et al. PPCF 2002]

Wendelstein 7-X: Island Divertor Interaction Zones

- In standard magnetic configuration two strike lines interact with the target plates
- Visible in heat-flux pattern (power exhaust), imping particle-flux pattern (particle exhaust) and erosion pattern of target plates (impurity production) => main areas of plasma-surface interactions

Forschungszentrum

Wendelstein 7-X: Heat-Flux Footprint on Target Plates

- Scrape-off layer width in present operational domain of W7-X in O(1cm) > wider than in tokamaks
- Heat flux is spread at the target plate due to diffusive transport
- Spreading and toroidal coverage define wetted area of the target plates

Forschungszentrum

Wendelstein 7-X: Wetted Area in Attached Conditions

- Wetted area depends on magnetic configuration and rises with input power and radiation
- Total wetted area in standard configuration: 1.0m² -1.7m² (out of 19m²)
- Peak heat load in all conditions below steady-state limit of PFC components of 10 MWm⁻²

Wetted area represents main plasma-surface interactions zone for ionic species in W7-X plasmas

TDU peak heat loads

Plasma-Surface Interactions (PSI) Processes

Objectives of PSI Studies in W7-X

- Exploration of operational window wall conditioning, impurity radiation, fuel recycling
- Investigate major PSI processes in the 3D environment of Wendelstein 7-X with graphite PFCs: material erosion, deposition, mixing, material transport, and fuel retention
 - Key access to PSI via spectroscopy (in-situ) and post-mortem analysis (ex-situ)
 - Experimental plasma information essential (T_e , n_e , Γ_{ion} , T_i , E_{in} , n_{neut} , T_{surf} , etc.)
 - Post-mortem analysis: interpretation of single magnetic configurations or plasmas
 - Interpretive modelling for code-experiment comparison
 - Plasma-edge code: 3D Monte-Carlo Code Package EMC3-EIRENE
 - PSI code: 3D Monte-Carlo Code ERO2.0
- Long-term goal: predictive modelling of PSI processes in W7-X towards
 - long-pulse operation with actively cooled graphite divertor: erosion (lifetime) & deposition (dust)
 - operation with metallic PFCs: W erosion (lifetime) and plasma compatibility (screening)

Intrinsic Impurities and Boronisation

- Initial divertor operation compromised by high impurity content (O,C) and H outgassing [A. Goriaev et al. PS 2020]
 - residual water in graphite released during PFC heat-up by plasma impact => O in plasma
 - oxide layers on first wall sputtered by plasma and charge exchange neutrals => O in plasma
- Boronisation: Break of O cycle in plasma => lower O content and flux from PFCs [S. Sereda et al. NF 2020, E. Wang et al. PS 2020]
- Impurity radiation in confined plasma vastly reduced / high purity of H plasma [B. Butterschön et al., M. Krycjowiak et al.]

Radiation-Induced Density Limit

- No plasma current driven density limit in stellarators
- Plasma density limit determined by radiative collapse
- Radiation determined by H and intrinsic impurities (C, O)

before - boronisation - after

 Divertor functionality with high divertor pressure and neutral compression after boronisation in W7-X [O. Schmitz et al. PPCF 2020]

Fuel Exhaust and Recycling

 Access to stable high density operation in divertor and main plasma: power detached divertor regime in W7-X

No significant volume recombination yet observed in W7-X

16

Long-pulse Steady-State Detachment in Wendelstein 7-X

Divertor detachment induced by C+H radiation and H recycling
Symmetric in all five modules with the ten divertor units

Steady-state operation for 26 s inertially cooled PFCs!

Visual Inspection of Divertor PFCs

Campaign integrated pattern after first year of operation: predominantly attached divertor conditions
Erosion and deposition pattern on horizontal target can be related to standard magnetic configuration

Multiple erosion and deposition processes => net migration paths from tile analysis

Cross-section in deposition zone in OP B (FIB - SEM)

6.5nm/s on VT

[M. Mayer et al. PFMC2019]

Graphite Erosion and Deposition: Horizontal Target (OP A)

- Poloidal profile of C erosion in standard configuration on marker PFC
- Strong Mo erosion at strike line caused by impinging O and C ions
- Complete erosion of C marker at strike line => scaling from Mo erosion

Initial C divertor net erosion estimate:

- Horizontal target: 34.5+/-8.4 g
- 13 marker PFCs measured
- Extrapolation to wetted area
- Vertical target: 13.3+/-5.7 g
- 4 marker PFCs measured
- Extrapolation to wetted area

=> challenging for 30 min steady-state plasmas

Erosion and Deposition Pattern: Horizontal Target (OP B)

Forschungszentrum

3D simulation of PSI in W7-X

- Significant operation in standard configuration (>50%)
- Erosion / deposition pattern on divertor modules measured: spectroscopy (gross) and post mortem (net)
- Main interaction: strike lines / wetted area (IR)

ERO2.0 calculations on HPSC (JURECA)

- 3D simulation of PSI with ERO2.0 of one W7-X module: periodic boundary conditions of fivefold symmetry
- 3D plasma background from EMC3-EIRENE: reference plasma in H with C impurity fractions

Plasma information from EMC3-EIRENE

C Erosion and Depostion Balance in Standard Configuration

Initial ERO2.0 Modelling of C Erosion and Deposition in W7-X

- Modelling of net C erosion and deposition on the horizontal target plate
- C sputtering by physical and chemical sputtering considered

Benchmark:¹³CH₄ injection through gas inlet in horizontal divertor (330 plasma seconds)
 Last TDU experiment: clean ¹³C deposition pattern in divertor – analysis ongoing [S. Brezinsek PFMC2019]

Summary and Outlook

- W7-X island divertor: characterisation with power loads, recycling and detachment
- PSI processes with graphite PFCs: erosion / deposition and role of boronisation
- Modelling of plasma edge (EMC3-EIRENE) and PSI (ERO2.0)

Uncooled graphite divertor (TDU)

Actively cooled CFC divertor

Actively cooled divertor with W PFCs

