

CAPILLARIES AS SELF-ORGANIZED ELECTROSTATIC LENSES ?

Giglio Eric

giglio@ganil.fr Centre de Recherche sur les lons, les Matériaux et la Photonique (CIMAP), F-14000, Caen

Guiding power of insulating capillaries

Home-made conical glass capillaries, obtained by pulling a softened capillary glass tube tube

ENSICAEN

Giglio Eric

13:47

Home-made conical glass capillaries, obtained by pulling a softened capillary glass tube tube

Can tapered capillaries be used to focus an ion beam? (Einzel lens)

cea

CINIS

ENSICAEN

*i*Map

Giglio Eric

13:47

 Write a numerical code that makes reliable, quantitative predictions for the beam transport through capillaries

2) Design new capillary holder in order to show experimentally the lens effect

université de Caen

Cimap

Numerical code for simulating the beam transport through glass capillaries, accounting for the charge dynamics in the glass wall

- Capillary is described by the inner S_1 and outer S_2 glass-vacuum interfaces
- Capillary is surrounded by a conducting interface S₃ **
- Charges accumulate only at the interfaces S_1 , S_2 and S_3
- Entrance and 10 first mm are grounded

cea

ENSICAEN

université de Caen

(iMap

- At grazing angles, a low energy particle of charge **q** • injects q+N_{se} holes at the impact point, which are quickly trapped by hole centers.
- The projectile is neutralized and N_{se} electrons are • emitted

+ Features of InCa4D

- 1) Accounts for non-linearity of the bulk and surface conductivity ...
- 2) Accounts for image charge of the projectile
- 3) Accounts for secondary electrons generated at S_1
- 4) Accounts for stray electrons at S₂
- 5) Control over emittance and divergence of the injected beam by simulating the ion source upstream
- 6) Follows the trajectory of neutralized projectiles
- 7) CPU efficient ! 10⁶ trajectories in 24h on 1 CPU

* CiMap

Surface charge dynamics

Siglio Eric

ENSICAEN

cea

Cimap

Surface charge dynamics

[] Giglio, E., Phys. Rev. A **101**, 052707 (2020) $\frac{\partial \sigma_1}{\partial t} = \kappa_s \vec{\nabla}_s \cdot \vec{E}_1 - \kappa_b E_{n,1}^+ + \frac{\gamma^h + \gamma_s^e}{\gamma_s^e}$ $\frac{\partial \sigma_2}{\partial t} = \kappa_s \vec{\nabla}_s \cdot \vec{E}_2 + \kappa_b E_{n,2}^- + \frac{\gamma_s}{\gamma_{str}}$ V_3 $\sigma_2 + \sigma_2^p$ Source potential σ^{p}_{3} $\kappa_b U_s^*$ Charge dynamics is controlled by the ratio Beam current **Pyrex glass** κ_b (20°C) Ks (10⁻¹³ S/m) (10⁻¹⁶ S) CNTS ENSICAEN cea

Cimap

Siglio Eric

Relevant Numerical Results

Two mechanism that result in a denser transmitted beam have been identified

1. Transverse compression (non-zero tilt angle)

2. Self-Organized Radial focusing (zero tilt angle)

Giglio Eric

1) Beam compression by transverse fields for tilted capillaries

Cimap

cea

ENSICAEN

Relevant Numerical Results

Two mechanism that result in a denser transmitted beam have been identified

- 1. Transverse compression (non-zero tilt angle)
- 2. Self-Organized Radial focusing (zero tilt angle)

université de Caen

Giglio Eric

Influence of the beam emittance

Cimap

Giglio Eric

Influence of the tilt angle

CITS ENSICAEN

cea

CiMap

 Write a numerical code that makes reliable quantitative predictions for the beam transport through capillaries

2) Design new capillary holder in order to show experimentally the lens effect

université de Caen

UN AEN

Cimap

Features of new capillary holder

- Allow measuring the emittance and intensity of the injected beam
- Screen capillary from stray electrons
- Heat capillary up to 70°C
- Axis symmetric geometry that can be truthfully simulated by InCa4D
- Allow measuring the charge stored in the capillary as a function of time

$Q[pC] = 88 \Delta Y[mm]$

PSD

Big Thank to our mechanics T. Been, P. Guinement,

J.-M. Ramillon

CINIS

ENSICAEN

cea

Giglio Eric

Transmitted Intensity as a function of time

CiMap

Giglio Eric

cea

Avoid Coulomb blocking

Cimap

Giglio Eric

cea

CINIS

ENSICAEN

Avoid Coulomb blocking

Conclusion and Persepectives

• Tapered capillaries are able to focus ion beams like electrostatic lenses.

Cimap

Siglio Eric

cea

- Coulomb blocking seems unavoidable for capillaries because of the non-zero emittance of the beam.
- Simulations suggest that Coulomb blocking can be delayed or even hindered if the tip is grounded.
- This open up a new application for using tapered capillaries for producing micro-beams
- Experimental evidence for stable micro-beams will be the next step (which was unfortunately delayed and could ne be shown here due to the confinement)

A. Cassimi S. Guillous

Centre de Recherche sur les lons, les Matériaux et la Photonique (CIMAP), F-14000, Caen, France, EU

Cimap

HongqiangH.Q. Zhang School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China

Co-Workers

Karoly Tökési

R. D. DuBois Missouri University of Science and Technology, Rolla MO 65409 USA R. D. DuBois

Cea

G.U.L. Nagy Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Hungary, EU