Karol HENSEL

Zdenko MACHALA

GENERATION OF ANTIMICROBIAL NO_x BY TRANSIENT SPARK DISCHARGE

UNDERSTANDING & OPTIMIZATION

Division of Environmental Physics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava, Slovakia

Effort sponsored by the Slovak Research and Development Agency APVV-0382-17, Slovak grant agency VEGA 1/0419/18.

Karol HENSEL Zdenko MACHALA

- introduction to the Transient Spark (TS) discharge
- TS applications = motivation
- TS diagnostic & modeling
- understanding of physics and chemistry behind TS
- optimization
- summary

Karol HENSEL Zdenko MACHALA

- introduction to the Transient Spark (TS) discharge
- TS applications = motivation
- TS diagnostic & modeling
- understanding of physics and chemistry behind TS
- optimization
- summary

Karol HENSEL Zdenko MACHALA

- introduction to the Transient Spark (TS) discharge
- TS applications = motivation
- TS diagnostic & modeling
- understanding of physics and chemistry behind TS
- optimization
- summary

Karol HENSEL Zdenko MACHALA

- introduction to the Transient Spark (TS) discharge
- TS applications = motivation
- TS diagnostic & modeling
- understanding of physics and chemistry behind TS
- optimization
- summary

Karol HENSEL Zdenko MACHALA

- introduction to the Transient Spark (TS) discharge
- TS applications = motivation
- TS diagnostic & modeling
- understanding of physics and chemistry behind TS
- optimization
- summary

Karol HENSEL Zdenko MACHALA

- introduction to the Transient Spark (TS) discharge
- TS applications = motivation
- TS diagnostic & modeling
- understanding of physics and chemistry behind TS
- optimization
- summary

DC driven self-pulsing

frequency 1-10 kHz

streamer-tospark (short)

highly reactiv non-equilibriu plasma

suitable for biomedical & environmenta applications

GENERATED PLASMA

- UV spectrum is dominated by N_2 SPS, and N II (O II) ionic lines
- Vis spectrum can be fitted by combining N I, N II, O I, O II and H lines
- $T_{exc} \sim 30$ kK (N II, O II), $T_{exc} \sim 10$ kK (N I, O I)

VOCs removal CO_2 utilization lean flame stabilization

BIO-DECONTAMINATION OF WATER AND SURFACES

- tested on various bacteria, yeasts, spores and biofilms
- antimicrobial agents in plasma UV radiation, electric field, ions, neutrals
 - the effect of **reactive neutral species** dominates in TS

ts

Machala Z. et al., J. Phys. D: Appl. Phys. 43, 222001 (2010).

VOCs removal CO_2 utilization lean flame stabilization

BIO-DECONTAMINATION OF WATER AND SURFACES

- tested on various bacteria, yeasts, spores and biofilms
- antimicrobial agents in plasma UV radiation, electric field, ions, neutrals
 - the effect of reactive neutral species dominates in TS

all agents

Machala Z. et al., J. Phys. D: Appl. Phys. 43, 222001 (2010).

VOCs removal CO_2 utilization lean flame stabilization

BIO-DECONTAMINATION OF WATER AND SURFACES

- tested on various bacteria, yeasts, spores and biofilms
- antimicrobial agents in plasma UV radiation, electric field, ions, neutrals
 - the effect of reactive neutral species dominates in TS

all agents

Machala Z. et al., J. Phys. D: Appl. Phys. 43, 222001 (2010).

liquid phase products

diagnostic gaseous products chemical modeling

BASIC RESEARCH OF TS STILL NEEDED

- optimization of reactive species generation
 - optimal settings for generation of NO, NO₂ or O₃
- optimization of chemical selectivity
 - which gas phase products dominate in TS?
 - can we change it?
- power efficiency

electrical diagnostic optical diagnostic

chemical modeling

EXPERIMENTAL SET-UP

oscilloscope high voltage probe current monitor resistor shunts

electrical diagnostic U optical diagnostic U

chemical

EXPERIMENTAL SET-UP

oscilloscope high voltage probe current monitor resistor shunts

EXPERIMENTAL SET-UP

oscilloscope high voltage probe current monitor resistor shunts

EXPERIMENTAL SET-UP

oscilloscope high voltage probe current monitor resistor shunts

optical diagnostic

products chemical modeling

EXPERIMENTAL SET-UP

oscilloscope high voltage probe current monitor resistor shunts

optical diagnostic

products chemical modeling

EXPERIMENTAL SET-UP

oscilloscope high voltage probe current monitor resistor shunts

products

optical

gaseous

products

CHEMICAL KINETIC MODEL – ZDPlasKin [1]

[1] www.zdplaskin.laplace.univ-tlse.fr [2] www.bolsig.laplace.univ-tlse.fr

liquid phase products

optical diagnostic gaseous products

STREAMER-TO-SPARK TRANSITION

- *E/N(t)* during streamer based on literature and our experimental data [1]
- N evolution from Naidis [2], T_g from N₂ SPS, E(t) calculated (discharging of C_{int}) [3]
- hydrodynamic expansion breakdown mechanism

 $\uparrow T_a \rightarrow \uparrow p \rightarrow hydrodynamic expansion \rightarrow \downarrow N \rightarrow \uparrow E/N \rightarrow ionization \rightarrow breakdown$

1000

800

600

400

200

0

800

E/N

[K] and

spark

liquid phase products

optical diagnostic gaseous products chemical

STREAMER-TO-SPARK TRANSITION

- *E/N(t)* during streamer based on literature and our experimental data [1]
- N evolution from Naidis [2], T_g from N₂ SPS, E(t) calculated (discharging of C_{int}) [3]

 $\uparrow T_a \rightarrow \uparrow p \rightarrow hydrodynamic expansion \rightarrow \downarrow N \rightarrow \uparrow E/N \rightarrow ionization \rightarrow breakdown$

• hydrodynamic expansion breakdown mechanism

1000 density N/N^o 8°0 spark 800 E/N primary 600 streamer neutrals - N/No [K] and — E/N [Td] 0.4 ---- T_a [K] 400 [1] Janda M et al. (2018) J. Phys. D: Appl. Phys. 51, 334002 relative secondary streamer [2] Naidis GV, (2009) 200 Eur. Phys. J. Appl. Phys. 47, 22803 [3] Dvonč L., Janda M (2015) 0 IEEE Trans. Plasma Phys. 43, 2562-2570 0 0 200 400 600 800 time [ns]

products

optical

diagnostic

gaseous

products

chemica

SHORT SPARK PHASE

- starts when ionization degree reaches 2×10⁻², duration 400 ns
- E(t) calculated (discharging of C_{int}), T_{el} evolution calculated

electrical diagnostic

liquid phase products

optical diagnostic gaseous products chemical modeling

RELAXATION PHASE – work in progress

- plasma channel expansion [1] $D_p(t) = D_p^{spark} + (D_p^{max} - D_p^{spark}) \{1 - \exp(-t/\tau_{exp})\}$ $D_p^{max} = 500-1000 \,\mu m$ $\tau_{exp} = 3-30 \,\mu s$
- temperature changes [2] $T_g(t) = T_g^o + (T_g^{max} T_g^o) \exp(-t/\tau_g)$
 - from measured 'steady-state' temperature $T_{g^{o}}(f)$
- mixing with ambient air
 - inflow (J_{N_2/O_2}^+) of N₂ and O₂
 - several models tested

$$J^{+}_{N_2/O_2}(t) \propto \Delta n_{N_2/O_2}(t)$$

 $J^{+}_{N_2/O_2}(t) \propto \Delta p(t)$

[1] Salmon MA (2018) Thesis, Univ. Paris-Saclay
 [2] Janda M et al. (2012) Plasma Sources Sci. Technol. 21, 045006

 $D_n^{spark} = 50 \ \mu m$

electrical diagnostic

liquid phase products

optical diagnostic gaseous products chemical modeling

RELAXATION PHASE – work in progress

- plasma channel expansion [1] $D_p(t) = D_p^{spark} + (D_p^{max} - D_p^{spark}) \{1 - \exp(-t/\tau_{exp})\}$ $D_p^{max} = 500-1000 \,\mu m$ $\tau_{exp} = 3-30 \,\mu s$
- temperature changes [2] $T_{g}(t) = T_{g}^{o} + (T_{g}^{max} T_{g}^{o}) \exp(-t/\tau_{g})$
 - from measured 'steady-state' temperature $T_{g^{o}}(f)$
- mixing with ambient air
 - inflow (J_{N_2/O_2}^+) of N₂ and O₂
 - several models tested

$$J^+_{N_2/O_2}(t) \propto \Delta n_{N_2/O_2}(t)$$

 $J^+_{N_2/O_2}(t) \propto \Delta p(t)$

[1] Salmon MA (2018) Thesis, Univ. Paris-Saclay
 [2] Janda M et al. (2012) Plasma Sources Sci. Technol. 21, 045006

 $D_r^{spark} = 50 \ \mu m$

liquid phase products

optical diagnostic gaseous products chemical modeling

RELAXATION PHASE – work in progress

- plasma channel expansion [1] $D_p(t) = D_p^{spark} + (D_p^{max} - D_p^{spark}) \{1 - \exp(-t/\tau_{exp})\}$ $D_p^{max} = 500-1000 \,\mu m$ $\tau_{exp} = 3-30 \,\mu s$
- temperature changes [2] $T_q(t) = T_q^o + (T_q^{max} T_q^o) \exp(-t/\tau_q)$
 - from measured 'steady-state' temperature $T_{g}^{o}(f)$
- mixing with ambient air
 - inflow (J_{N_2/O_2}^+) of N₂ and O₂
 - several models tested

$$egin{aligned} &J^{+}_{N_{2}/O_{2}}(t) \ \propto \ \varDelta \, n_{N_{2}/O_{2}}(t) \ &J^{+}_{N_{2}/O_{2}}(t) \ \propto \ \varDelta \, p(t) \end{aligned}$$

[1] Salmon MA (2018) Thesis, Univ. Paris-Saclay
 [2] Janda M et al. (2012) Plasma Sources Sci. Technol. 21, 045006

 $D_{2}^{spark} = 50 \ \mu m$

liquid phase products

optical diagnostic gaseous products chemical

MODEL VERIFICATION

- voltage temporal evolution good agreement
- electron density reasonable agreement
- suitable for study of RONS generation mechanisms

RONS – reactive oxygen and nitrogen species

liquid phase

products

optical

diagnostic

gaseous

products

modeling

MODEL VERIFICATION

- voltage temporal evolution good agreement
- electron density reasonable agreement
- suitable for study of RONS generation mechanisms

C atoms by streamer ionization & atomization by spark more N atoms during spark

RONS DURING ACTIVE DISCHARGE PHASE

- streamer produces mostly $N_2{}^{\ast}$ and O atoms
- strong degree of ionization and atomization
- more N than O atoms indicates different final products
 - generation of some NO shortly after the spark

$$\begin{array}{c}
 T_{e'} \\
 e + N \leftrightarrow e + e + N^{+} \\
 N^{+} + O_{2} \rightarrow NO + O^{+}
 \end{array}$$

O atoms by streamer luring spa

RONS DURING ACTIVE DISCHARGE PHASE

- streamer produces mostly $N_2{}^{\star}$ and O atoms
- strong degree of ionization and atomization
- more N than O atoms indicates different final products

• generation of some NO shortly after the spark T_{el} $e + N \leftrightarrow e + e + N^+$ $N^+ + O_2 \rightarrow NO + O^+$

RONS DURING ACTIVE DISCHARGE PHASE

- streamer produces mostly $N_2{}^{\star}$ and O atoms
- strong degree of ionization and atomization
- more N than O atoms indicates different final products

 generation of some NO shortly after the spark

$$e + N \stackrel{T_{e'}}{\leftrightarrow} e + e + N^+$$

 $N^+ + O_2 \rightarrow NO + O^+$

RONS DURING ACTIVE DISCHARGE PHASE

- streamer produces mostly $N_2{}^{\star}$ and O atoms
- strong degree of ionization and atomization
- more N than O atoms indicates different final products

 generation of some NO shortly after the spark

$$e + N \stackrel{T_{e'}}{\leftrightarrow} e + e + N^+$$

 $N^+ + O_2 \rightarrow NO + O^+$

ionization & atomization by spark

More N atoms during spark NO shortly after spark NO₂/O₃ in relaxation

NO, NO₂ and O₃ GENERATION MECHANISMS

- NO generated by modified Zeldovich mechanism (fast, high T_g)
 - $\begin{array}{l} O_2 + M \rightarrow O + O + M \\ O + N_2(v \ge 0) \rightarrow N + NO \\ N/N^* + O_2(v \ge 0) \rightarrow O + NO \end{array}$

(thermal decomposition, relatively slow, high T_g) (rate limiting slow reaction)

• NO₂ generation/removal (relatively fast, elevated T_g)

 $\begin{array}{c} \mathsf{O} + \mathsf{NO} + \mathsf{M} \rightarrow \mathsf{NO}_2 + \mathsf{M} \\ \mathsf{O} + \mathsf{NO}_2 \rightarrow \mathsf{O}_2 + \mathsf{NO} \end{array} \right\} \quad \mathsf{O} \downarrow$

- O_3 generation (slower, low T_g) $O + O_2 + M \rightarrow O_3 + M$
- NO₂ generation (slow, low T_g) NO + O₃ \rightarrow NO₂ + O₂

ionization & atomization by spark

More N atoms during spark NO shortly after spark NO₂/O₃ in

NO, NO₂ and O₃ GENERATION MECHANISMS

• NO generated by modified Zeldovich mechanism (fast, high T_g)

 $O_2 + M \rightarrow O + O + M$ $O + N_2(v \ge 0) \rightarrow N + NO$ $N/N^* + O_2(v \ge 0) \rightarrow O + NO$

(thermal decomposition, relatively slow, high T_g) (rate limiting slow reaction)

• NO₂ generation/removal (relatively fast, elevated T_g)

 $\begin{array}{c} \mathsf{O} + \mathsf{NO} + \mathsf{M} \rightarrow \mathsf{NO}_2 + \mathsf{M} \\ \mathsf{O} + \mathsf{NO}_2 \rightarrow \mathsf{O}_2 + \mathsf{NO} \end{array} \right\} \quad \mathsf{O} \downarrow$

- O_3 generation (slower, low T_g) $O + O_2 + M \rightarrow O_3 + M$
- NO₂ generation (slow, low T_g) NO + O₃ \rightarrow NO₂ + O₂

ionization & atomization by spark

MO shortly after spark

NO₂/O₃ in relaxation phase

NO, NO₂ and O₃ GENERATION MECHANISMS

• NO generated by modified Zeldovich mechanism (fast, high T_g)

 $O_2 + M \rightarrow O + O + M$ $O + N_2(v \ge 0) \rightarrow N + NO$ $N/N^* + O_2(v \ge 0) \rightarrow O + NO$

(thermal decomposition, relatively slow, high T_g) (rate limiting slow reaction)

• NO₂ generation/removal (relatively fast, elevated T_g)

 $\begin{array}{c} O + NO + M \rightarrow NO_2 + M \\ O + NO_2 \rightarrow O_2 + NO \end{array} \right\} O \downarrow$

- O_3 generation (slower, low T_g) $O + O_2 + M \rightarrow O_3 + M$
- NO₂ generation (slow, low T_g) NO + O₃ \rightarrow NO₂ + O₂

ionization & atomization by spark

more N atoms during spark

NO shortly after spark

NO₂/O₂ in relaxation phase

NO, NO₂ and O₃ GENERATION MECHANISMS

• NO generated by modified Zeldovich mechanism (fast, high T_g)

 $O_2 + M \rightarrow O + O + M$ $O + N_2(v \ge 0) \rightarrow N + NO$ $N/N^* + O_2(v \ge 0) \rightarrow O + NO$

(thermal decomposition, relatively slow, high T_g) (rate limiting slow reaction)

• NO₂ generation/removal (relatively fast, elevated T_g)

 $\begin{array}{c} O + NO + M \rightarrow NO_2 + M \\ O + NO_2 \rightarrow O_2 + NO \end{array} \right\} O \downarrow$

• O₃ generation (slower, low T_g) O + O₂ + M \rightarrow O₃ + M

• NO₂ generation (slow, low T_g) NO + O₃ \rightarrow NO₂ + O₂

ionization & atomization by spark

more N atoms during spark

NO shortly after spark

NO₂/O₃ in relaxation

NO, NO₂ and O₃ GENERATION MECHANISMS

• NO generated by modified Zeldovich mechanism (fast, high T_g)

 $O_2 + M \rightarrow O + O + M$ $O + N_2(v \ge 0) \rightarrow N + NO$ $N/N^* + O_2(v \ge 0) \rightarrow O + NO$

(thermal decomposition, relatively slow, high T_g) (rate limiting slow reaction)

• NO₂ generation/removal (relatively fast, elevated T_g)

 $\begin{array}{c} O + NO + M \rightarrow NO_2 + M \\ O + NO_2 \rightarrow O_2 + NO \end{array} \right\} O \downarrow$

• O₃ generation (slower, low T_g) O + O₂ + M \rightarrow O₃ + M

• NO₂ generation (slow, low T_g) NO + O₃ \rightarrow NO₂ + O₂

- NO generated by N⁺ and by modified Zeldovich mechanism (fast, high T_g)
- how to increase the NO production according to model?
 - stronger spark pulses
 - more N and $N^{\scriptscriptstyle +}$
 - slow cooling (or higher T_g^{max})
 - more time for Zeldovich mechanism reactions
 - fast inflow of O₂/N₂ to hot plasma channel
 - more reactants for Zeldovich mechanism reactions
- how to do it in praxis ?
 - circuit modifications

- NO generated by N⁺ and by modified Zeldovich mechanism (fast, high T_g)
- how to increase the NO production according to model?
 - stronger spark pulses
 - more N and $N^{\scriptscriptstyle +}$
 - slow cooling (or higher T_g^{max})
 - more time for Zeldovich mechanism reactions
 - fast inflow of O_2/N_2 to hot plasma channel
 - more reactants for Zeldovich mechanism reactions
- how to do it in praxis ?
 - circuit modifications

- NO generated by N⁺ and by modified Zeldovich mechanism (fast, high T_g)
- how to increase the NO production according to model?
 - stronger spark pulses
 - more N and $N^{\scriptscriptstyle +}$
 - slow cooling (or higher T_g^{max})
 - more time for Zeldovich mechanism reactions
 - fast inflow of O₂/N₂ to hot plasma channel
 - more reactants for Zeldovich mechanism reactions
- how to do it in praxis ?
 - circuit modifications

- NO generated by N⁺ and by modified Zeldovich mechanism (fast, high T_g)
- how to increase the NO production according to model?
 - stronger spark pulses
 - more N and $N^{\scriptscriptstyle +}$
 - slow cooling (or higher T_g^{max})
 - more time for Zeldovich mechanism reactions
 - fast inflow of O_2/N_2 to hot plasma channel
 - more reactants for Zeldovich mechanism reactions
- how to do it in praxis ?
 - circuit modifications

optimization criteria electric circuit modification

additional resistor external capacitor smaller limiting resistor

- NO generated by N⁺ and by modified Zeldovich mechanism (fast, high T_g)
- how to increase the NO production according to model?
 - stronger spark pulses
 - more N and $N^{\scriptscriptstyle +}$
 - slow cooling (or higher T_g^{max})
 - more time for Zeldovich mechanism reactions
 - fast inflow of O_2/N_2 to hot plasma channel
 - more reactants for Zeldovich mechanism reactions
- how to do it in praxis ?
 - circuit modifications

optimization criteria

ELECTRIC CIRCUIT FOR TS GENERATION

• additional resistor *r* (0.1-30 kΩ) to divide C_{int} ($C_0 \sim 20$ pF, $C_1 \sim 10$ pF)

optimization criteria

electric circuit modifications

additional resistor external capacitor

smaller limiting resistor

ELECTRIC CIRCUIT FOR TS GENERATION

• additional resistor r (0.1-30 k Ω) to divide C_{int} ($C_0 \sim 20$ pF, $C_1 \sim 10$ pF)

ELECTRIC CIRCUIT FOR TS GENERATION

time [ns]

• additional resistor r (0.1-30 k Ω) to divide C_{int} ($C_0 \sim 20$ pF, $C_1 \sim 10$ pF)

Janda M. et al., Plasma Sources Sci. Technol. **20**, 035015 (2011)

INFLUENCE OF *r* ON NOX GENERATION

• strongest effect for $C_0 \sim 15$ pF, r = 102 k Ω ($C_1 \sim 20$ pF)

electric circuit modifications

additional resistor external capacitor smaller limiting resistor

INFLUENCE OF *r* ON NOX GENERATION

• strongest effect for $C_0 \sim 15$ pF, r = 102 k Ω ($C_1 \sim 20$ pF)

electric circuit modifications

additional resistor external capacitor smaller limiting resistor

INFLUENCE OF *r* ON NOX GENERATION

• strongest effect for $C_0 \sim 15$ pF, r = 102 k Ω ($C_1 \sim 20$ pF)

INFLUENCE OF C_{ext} ON NOx GENERATION

• additional external capacitor $C_{ext} = 50-500 \text{ pF}, C_{int} \sim 20 \text{ pF}$

optimization criteria

electric circuit modifications

additional resistor

capacito

INFLUENCE OF Cext ON NOX GENERATION

- external capacitor C_{ext} = 50 pF, $C_{int} \sim$ 20 pF, R = 9.4 M Ω or 3.2 M Ω
- *C*_{ext} > 100 pF not suitable (low TS frequency)

optimization criteria

electric circuit modifications

additional resistor

INFLUENCE OF Cext ON NOX GENERATION

- external capacitor C_{ext} = 50 pF, C_{int} ~ 20 pF, R = 9.4 M Ω or 3.2 M Ω
- *C*_{ext} > 100 pF not suitable (low TS frequency)
- Cext does not improve

NOx generation efficiency

optimization criteria

electric circuit modifications

additional resistor

external capacitor

INFLUENCE OF Cext ON NOX GENERATION

- external capacitor C_{ext} = 50 pF, $C_{int} \sim$ 20 pF, R = 9.4 M Ω or 3.2 M Ω
- C_{ext} > 100 pF not suitable (low TS frequency)
- *C*_{ext} does not improve

NOx generation efficiency

- C_{ext} enables to use lower R
- higher NOx concentration can be achieved

optimization criteria

electric circuit modifications

additional resistor external capacitor

INFLUENCE OF Cext ON NOX GENERATION

- external capacitor C_{ext} = 50 pF, C_{int} ~ 20 pF, R = 9.4 M Ω or 3.2 M Ω
- C_{ext} > 100 pF not suitable (low TS frequency)
- *C*_{ext} does not improve

NOx generation efficiency

- C_{ext} enables to use lower R
- higher NOx concentration can be achieved
- transition to glow discharge without C_{ext} when R = 3.2 M Ω

SUMMARY

- TS relatively simple source of highly reactive non-thermal plasma
 - streamer phase excited nitrogen species generation mainly
 - short spark phase significant source of O and N atoms
- NO_x dominant gas phase products for TS in air
 - higher temperature and high degree of ionization during spark phase
- higher efficiency of NOx generation still possible
 - electric circuit modifications
 - NOx production enhancement with division of capacity
 - external capacity enables higher energy density and more NOx