

On the automatic computation of global (intermolecular) potential energy surfaces for quantum dynamical simulations

Ramón L. PANADÉS-BARRUETA

30th Summer School and International Symposium on the Physics of Ionized Gases

(SPIG2020)

August 27, 2020

1 Environmental and physicochemical problem

Interaction of soot particles with atmospheric molecules

2 Theoretical modeling of the system

- Automatic topographical characterization of the PES
 - vdW-TSSCDS
- Computation of the PES

3 The Pyrene-NO₂ system

- LL trajectories and sampling
- HL stationary points
- Reaction network

1 Environmental and physicochemical problem

Interaction of soot particles with atmospheric molecules

2 Theoretical modeling of the system

- Automatic topographical characterization of the PES
 - vdW-TSSCDS
- Computation of the PES

3 The Pyrene-NO₂ system

- LL trajectories and sampling
- HL stationary points
- Reaction network

Environmental problem

Incomplete combustion products

etps://ediforniaac.wordpress.com/2015/02/19/what is sock/

http://www.dw.com/en/hoping-for-a-fresh-sea-breeze-aboard a-cruise-ship-better-hold-your-nose/a-37284464

https://www.quora.com/Why-is-the-exhaust-frommy-diesel-engine-black-smoke

http://www.co2offsetresearch.org/aviation/Particulates.htm

What is the interaction between a "soot" particle and a (small) molecule?

Soot particles are second to CO₂ in their contribution to global warming

Ramanathan et al. Nat. Geosci. 1.4 (2008): 221.

REVIEW ARTICLE

Global and regional climate changes due to black carbon

Soot particles are substrate to heterogeneous reactions leading to the production of radicals...

Monge et al. PNAS 107.15 (2010): 6605-6609.

Light changes the atmospheric reactivity of soot

Maria Eugenia Monge¹, Barbara D'Anna¹¹, Linda Mazri¹, Anne Giroir-Fendler¹, Markus Ammann¹, D. J. Donaldson¹, and Christian George¹

Suspected neurotoxicity of traffic related pollution

Sunyer et al. PLOS Med. 12.3 (2015): e1001792.

RESEARCH ARTIC

Association between Traffic-Related Air Pollution in Schools and Cognitive Development in Primary School Children: A Prospective Cohort Study

Jordi Sunyer^{+1,0,0,4}, Mikel Esnaola^{1,0,0}, Mar Alvarez-Pedrerol^{1,0,0}, Joan Porns^{1,0,0}

Modeling of the system

P. R. Buseck et al., Atmos. Chem. Phys. Discuss. (2012)

Ground state of the Pyrene NO_2 system

Environmental and physicochemical problem
Interaction of soot particles with atmospheric molecules

2 Theoretical modeling of the system

- Automatic topographical characterization of the PES
 - vdW-TSSCDS
- Computation of the PES

3 The Pyrene-NO₂ system

- LL trajectories and sampling
- HL stationary points
- Reaction network

The vdW-TSSCDS method

The vdW-TSSCDS method

Université de Lille

Computation of the PES

10/21

Environmental and physicochemical problem

Interaction of soot particles with atmospheric molecules

2 Theoretical modeling of the system

- Automatic topographical characterization of the PES
 - vdW-TSSCDS
- Computation of the PES

3 The Pyrene-NO₂ system

- LL trajectories and sampling
- HL stationary points
- Reaction network

LL trajectories and sampling

Université de Lille

12/21

HL Transition States and Minimum Energy Paths

Université de Lille

HL Minima obtained from IRCs

14/21

Energies of the Stationary Points

Energies of the HL Stationary Points

Structure	$\Delta E(cm^{-1})$
MINR-TS1	4.3894e-04
MINR-TS2	4.3894e-04
MINR-TS3	$6.4751e{+}01$
MINR-TS4	3.8800e+01
MINR-TS5	7.6236e+01
TS1	$7.4973e{+}01$
TS2	7.4372e+01
TS3	1.3858e+02
TS4	$5.1983e{+}01$
TS5	2.8805e+02
MINF-TS1	4.3894e-04
MINF-TS2	6.4752e + 01
MINF-TS3	$6.4753e{+}01$
MINF-TS4	0.0000
MINF-TS5	9.7619e + 01

Panadés-Barrueta R., Dembele K., Duflot D. and Peláez D. (in preparation)

Reaction network

Panadés-Barrueta R., Dembele K., Duflot D. and Peláez D. (in preparation)

Université de Lille

16/21

Reaction network

Reaction network

ż

2

IRCT56WB97D

IRCTSEWB97D

4

PM7

Université de Lille

18/21

Environmental and physicochemical problem

Interaction of soot particles with atmospheric molecules

2 Theoretical modeling of the system

- Automatic topographical characterization of the PES
 - vdW-TSSCDS
- Computation of the PES

3 The Pyrene-NO₂ system

- LL trajectories and sampling
- HL stationary points
- Reaction network

Conclusions and future perspectives

Conclusions

- The present study constitutes the first application to weakly bound clusters of the recently developed vdW-TSSCDS method
- The topography of the intermolecular PES of the Pyr-NO₂ has been automatically characterized
- The reaction network of the system has been elucidated. Some problems in the LL of theory have been detected.

Perspectives: Pyr-NO₂

- Obtain the global interaction potential (article in preparation)
- Determination of the ground state
- Study the electronic excitations
- Use SRPs to improve LL stage (Panadés-Barrueta *et al*, Front. Chem. 7:576. 2019)

Conclusions and future perspectives

Conclusions

- The present study constitutes the first application to weakly bound clusters of the recently developed vdW-TSSCDS method
- The topography of the intermolecular PES of the Pyr-NO₂ has been automatically characterized
- The reaction network of the system has been elucidated. Some problems in the LL of theory have been detected.

Perspectives: Pyr-NO₂

- Obtain the global interaction potential (article in preparation)
- Determination of the ground state
- Study the electronic excitations
- Use SRPs to improve LL stage (Panadés-Barrueta *et al*, Front. Chem. 7:576. 2019)

Acknowledgements

PhD supervisor: Daniel Peláez-Ruiz (ISMO) Collaborations:

PhLAM: PCMT Group, Maurice Monnerville TC Heidelberg: Oriol Vendrell MOPAC: James Stewart (vdW-)TSSCDS: Emilio Martínez-Núñez, Sabine Kopec

Thank you for your attention!