

PHYSICAL APPLICATIONS IN LIFE SCIENCE

<u>K.-D. Weltmann</u>, T. Gerling, J.F. Kolb, Th. von Woedtke Leibniz Institute for Plasma Science and Technology (INP), Greifswald, GERMANY

Plenary Lecture, SPIG 2020 Wednesday, August 26, 2020,

FROM IDEA TO PROTOTYPE

FROM IDEA TO PROTOTUPE

PHYSICAL APPLICATIONS IN LIFE SCIENCE

- Physical applications are today's reality in nearly all fields of LIFE SCIENCE
- LIFE SCIENCE means biology, medicine, biomedicine, pharmacy, biochemistry, chemistry, molecular biology, biophysics, bioinformatics, human biology, agricultural technology, nutritional science, food research, and also scientific research on biogenic natural resources and on biodiversity...
- Today: Focus on PLASMA Physical Applications (Hygiene, Medicine, Agricuture)

Atmospheric pressure plasmas – "tool box"

	Non-Thermal						
	"Cold" Non-Thermal Plasmas	Translational ("Hot NT") Plasmas			Thermal Plasmas		
	$T_i \approx T_g \approx 300 \dots 400 \text{ K}$ $T_i << T_e < 10^5 \text{ K} (10 \text{ eV})$	$T_i << T_e ≤ 10^4 10^5 K$ $T_i ≈ T_g ≤ 4 10^3 K$			$T_i \approx T_g \approx T_e$ $T_x < 5 \ 10^3 \dots 10^4 \ K$		
[1]	Barrier discharges		[5]	Gliding Arc	:	[8]	Arc
[2]	Coronas			[6] A	Arc jet		
[3]	Microplasmas-Arrays		[7]	Plasma Tor	ch		
[4]	Plasma jets						

K.-D. Weltmann & Th. von Woedtke, Eur. Phys. J. Appl. Phys. 55 (2011) 13807

Atmospheric pressure plasma generation

- 1. Ionization and excitation of atoms or molecules of a **gas** (Ar, He, O₂, N₂, air, or mixtures thereof) by supplying (electrical) energy
- 2. Interaction of ionized atoms/molecules and electrons with other atoms or molecules both in the plasma phase and in neighbouring media (atmospheric air, liquids, surfaces) resulting in **generation of reactive species**
- 3. Emission of electromagnetic **radiation** (UV/VUV, visible light, IR/heat, electric fields) as additional result of ionization and excitation processes

Atmospheric pressure plasmas

Chemical reactivity:

 Initiation of chemical reactions at low temperatures and without additional catalysts

Biological effects:

- Inactivation of a broad spectrum of microorganisms including multidrug resistant ones
- Stimulation of cell proliferation and angiogenesis, promotion of tissue regeneration and wound healing
- Inactivation of cells by initialization of programmed cell death above all in cancer cells

Atmospheric pressure plasmas

Two basic principles predominatly used in biomedicine

K.-D. Weltmann, H.-R. Metelmann, Th. von Woedtke, Europhysics News (EPN) 47 No 5-6 (2016) 39-42

Decontamination (Hygiene)

Medicine (Plasma)

Agriculture

Biodecontamination/-sterilization: terms and definitions

Decontamination

- Removal of dangerous contaminations
- CBNR (<u>Chemical</u>, <u>B</u>iological, <u>R</u>adiological, <u>N</u>uclear)
 - \rightarrow includes prions, pyrogens, viruses, chemical contaminations etc.

Disinfection

- "To put dead or living material in a situation, that it is not longer able to contaminate" (DAB)
- Practical advise: reduction of micro organisms by at least a factor of 10⁵

Sterilization

- "Sterility is the absence of viable microorganisms." (Ph. Eur. 5.00/5.1.1.)
- Sterility Assurance Level SAL= 10⁻⁶ (Ph. Eur. 1997),
- Practical advise: reduction of 6 lg-steps (RKI 1997)

Aseptic/antiseptic

- To keep/inactivate pathogenic microorganisms to prevent infections
- Antiseptic: correlated to lesions
- Aseptic: correlated to objects/products

First investigations with the aim to
reduce infections: R. Koch (1881)Robert Koch
(1843–1910)

Societal challenge: Nosocomial infections

Contaminated surfaces increase cross-transmission:

https://commons.wikimedia.org/wiki/File:Contaminated_surfaces_increase_cross-transmission.jpg

Ideas/prototypes (INP)

ConPlas: contacted plasma

Weltmann et al., Contrib. Plasma Phys. 49 (2009) 631-640; Weltmann et al., Pure Appl. Chem. 82 (2010) 1223-1237; Weltmann & von Woedtke, Eur. Phys. J. Appl. Phys. 55 (2011) 13807; Weltmann et al., Contrib. Plasma Phys. 52 (2012) 644-654; Weltmann et al., IEEE Trans. Plasma Sci. 40 (2012) 2963-2969

FROM IDEA TO PROTOTYPE

Ideas/prototypes, coplanar DBD: CeramTec-Version

→ large active area treatment : 30mm x 200mm

Plasma-based treatment of gas streams

Mobile plasma reactor for gas/air treatment

Biological decontamination by means of aerosols

Elimination of coli bacteria with DBD stack reactor:

Societal challenge: Water pollution

Drugs on tap

John Naish

1st May 2009 Tweet

Taking a pill for a headache may seem like the most natural thing in the world, but prescription drugs are forcing their way into every corner of our lives and environment, says John Naish

This article was updated on 16th October 2009, following a notification of an inaccuracy.

Britain has a serious and unnecessary drug habit, but the

implications of our pill-for-every-ill culture go far beyond the adverse effects on human health. The complex chemicals in modern pharmaceuticals, as well as the manufacturing processes involved, leave a massive industrial footprint on the natural world that is largely ignored by both science and government.

Discharges Close to, Above or in Water

High voltages (AC, pulsed DC) are applied to dedicated electrode geometries to provide intense electric fields and/or 'cold' physical plasmas:

Electrical Discharges with and in Liquids

Electrical Discharges with and in Liquids

Electrical Discharges with and in Liquids

., "Plasma-liquid interactions: a review and roadmap," Technol. 25 (2016) 053002. P.J. Bruggeman et al. Plasma Sources Sci.

Electrical Discharges with and in Liquids

P.J. Bruggeman et al., "Plasma-liquid interactions: a review and roadmap," Plasma Sources Sci. Technol. 25 (2016) 053002.

Electrical Discharges with and in Liquids

Pu	Ised DBD (200 ns, 3	/Cor 5 kV	ona ′)			abov	ve liqui	d	in			
	Power Energy, kWh m ⁻³ Substance, µg L ⁻¹	Raw	30 W 0.1 PCD	Removal	30 W 0.5 PCD	Removal	30 W 1.0 PCD	Removal	250 W 0.5 PCD	Removal	250 W 1.0 PCD	ow LQ. Removal
10	Bisoprolol Caffeine Carbamazepine Ciprofloxacin Ciplonram	0.84 470 0.35 13 0.23	0.6 450 0.25 8.6	29% 4% 29% 34% 26%	0.17 420 < 0.05 4.1	80% 11% 100% 68% 100%	< 0.10 380 < 0.05 0.85 < 0.10	100% 19% 100% 93% 100%	0.5 480 0.21 7.2	40% - 2% 40% 45% 30%	0.35 480 0.088 5.4	58% -2% 75% 58% 100%
basic	Diclofenac Doxycycline Enalapril	0.6 2 0.31	0.42 1.2 0.26	30% 40% 16%	< 0.10 < 0.05 < 0.20 0.23	100% 100% 26%	< 0.10 < 0.05 < 0.20 0.19	100% 100% 39%	0.26 0.81 0.27	57% 60% 13%	0.083 0.32 0.25	86% 84% 19%
contig	Entacapone Estriol Estrone Furosemide Hydrochlorothiazide	1.1 0.91 0.1 11 4.2 0.45	0.26 1.1 0.065 4.7 4.8 0.33	76% - 21% 35% 57% - 14% 27%	< 0.10 < 0.05 < 0.05 < 0.50 4 0.43	100% 100% 100% 5%	< 0.10 < 0.05 < 0.05 < 0.50 2.2 0.25	100% 100% 100% 48% 22%	0.18 0.49 < 0.050 2.6 5.4 0.37	84% 46% 100% 76% - 29%	< 0.10 0.2 < 0.05 < 0.50 4.3 0.37	100% 78% 100% 100% -2%
	Ibuprofen Metoprolol Metronidazole Naproxen Ofloxacin Paracetamol	28 0.37 8.9 1.1 16 580	0.33 34 0.33 6.6 0.78 11 420	- 21% 11% 26% 29% 31% 28%	0.43 24 0.18 7.8 < 0.10 2.2 70	14% 51% 12% 100% 86% 88%	0.33 14 < 0.05 7.3 < 0.10 < 0.50 63	50% 100% 18% 100% 100% 89%	43 0.33 8.1 0.69 9.4 260	-54% 11% 9% 37% 41% 55%	26 0.26 8.4 0.5 5.7 130	7% 30% 6% 55% 64% 78%
some	Propranolol Sulfamethoxazole Tetracycline Trimethoprim	0.21 5.8 1.6 1.2	0.1 2.7 0.83 0.92	52% 53% 48% 23%	< 0.10 < 0.10 0.15 0.061	100% 100% 91% 95%	< 0.10 < 0.10 0.14 < 0.01	100% 100% 91% 100%	< 0.10 0.25 0.59 0.73	100% 96% 63% 39%	< 0.10 < 0.10 0.23 0.31	100% 100% 86% 74%

P. Ajo, S. Preis, T. Vornamo. M. Mänttäri, M. Kallioninen, M. Lohi-Kultanen, "Hospital wastewater treatment with pilot-scale pulsed corona discharge for removal of pharmaceutical residues," J. Environ. Chem. Eng. 6 (2018) 1569-1577.

., "Plasma-liquid interactions: a review and roadmap," Technol. 25 (2016) 053002. P.J. Bruggeman et al Plasma Sources Sci.

Electrical Discharges with and in Liquids

P.J. Bruggeman et al., "Plasma-liquid interactions: a review and roadmap," Plasma Sources Sci. Technol. 25 (2016) 053002.

P

FROM IDEA TO PROTOTYPE

Electrical Discharges with and in Liquids

R. Banaschik, P. Lukes, H. Jablonowski, M.U. Hammer, K.-D. Weltmann, J. Kolb, "Potential of pulsed corona discharges generated in water for the degradation of persistent pharmaceutical residues," Water Research 84 (2015) 127-135.

R. Banaschik, G. Burchhardt, K. Zocher, S. Hammerschmidt, J. F. Kolb, K.-D. Weltmann, "Comparison of Pulsed Corona Plasma and Pulsed Electric Fields for the Decontamination of Water Containing Legionella pneumophila as model organism," Bioelectrochemistry 112 (2016) 83-90.

Medicine (Plasma)

Decontamination (Hygiene)

Agriculture

ROM IDEA TO PROTOTYPE

Electrosurgery – already in use

Argon Plasma Coagulation (APC)

ERBE Elektromedizin GmbH, Tübingen, Germany

Cauterization: tissue destruction, burning

- hemostatsis
- cutting, removal of tissue

Figure 6: Endoscopic application of APC

Figure 3: Schematic representation of a typical APC setup. The argon flows through a tube containing the electrode wire. The discharge is ignited by a HF voltage U_w between the wire end and the tissue. After breakdown, HF current I_w flows into the tissue, causing a coagulation effect, and back to the HF generator through the neutral electrode (NE).

ERBE

Plasma medicine

Application of physical plasma directly on or in the human body for therapeutic purposes

radicals and chemical products

Low temperature plasma (< 40°C) at open atmospheric conditions plasma cold atmospheric plasma (CAP)

thermal radiation

electromagnetic fields

FROM IDEA TO PROTOTYPE

Atmospheric pressure plasmas for biomedicine

FROM IDEA TO PROTOTVYPE

CE certified plasma medical devices

Certification based on

- ✓ Clinical research
- ✓ Comprehensive physical and biological plasma source characterization

Atmopheric pressure plasma jet kINPen MED

170 g

30-50°C

Argon

3-5 slm

L = 155 mm, Ø = 20 mm

1.1 MHz; 2...6 kV_{pp}

Dimensions:

HF-Voltage:

Gas temp.:

Feed gas:

Gas flow:

Weight:

Certified as **medical device class lla** (June 2013) according to European Council Directive 93/42/EEC

<u>Purpose:</u> Treatment of chronic wounds as well as pathogen-based diseases of skin, skin appandages, extremities and body

K.-D. Weltmann, et al., Contrib. Plasma Phys. 49 (2009) 631-640; S. Reuter et al., J. Phys. D: Appl. Phys. 51 (20189 233001; S. Bekeschus et al., Clin. Plasma Med. 4 (2016) 19–28 www.neoplas-tools.eu

FROM IDEA TO PROTOTYPE

Plasma medicine: Focus wound healing

Clinical plasma medicine: focus on chronic wounds

Case series of kINPen MED in clinical practice

Interims analysis (12/2014 – 04/2016):

Patients:	n=61, 20 female, 41 male; age 41-84 years; "therapied-out", "resistant to therapy"				
Ulcers:	11 venous, 19 ischaemic, 31 mixed-type/others				
Comorbidities:	49 (hypertonia, cardiac insufficiency, obesity, diabetes)				
Size:	1 – 775 cm² (mean 35.8 cm²)				
Duration : 0.25 – 228 months (mean 24.8 months)					
Wound contamina	ation/infection: sensitive: 42, multiresistant: 18				
Treatment : kinpen MED, 4.5 slm Ar, 30-60 s/cm ² , additionally to conventional wound					
care					
Number of treatments: 1 - 52 (mean 10); 1 – 5 per week (mean 3)					

Healing rate	96.7 %						
Complete healing Ulcus reduction No effect	43.3 % (27 patients) 52.5 % (32 patients) 3.2 % (2 patients)						
Wound decontamination							
Sensitive bacteria	73.8 % (31/42)						
Multiresistant bacteria	100 % (18/18)						
Complications	0						

Lower leg of a male patient (63 years old) with chronic wound (peripheral artery disease stage IV) contaminated with *P. aeruginosa*, before (left) and after the end of 34 treatments by kinpen MED over 17 weeks (right)

Male patient (74 years old), ischaemic stump of forefoot, before (left) and after (right) 8 treatments by kinpen MED; complete elimination of MRSA

Lower leg of a female patient (64 years old), venous ulcus wound contaminated with sensitive bacteria before (left) and after (right) 8 treatments by kinpen MED

B. Schwetlick, 5th German Plasma Medicine Workshop, September 13-14, 2017, Rostock, Germany

Clinical plasma medicine: vision - cancer treatment

Unternehmen Region 2/2016

Cancer treatment: clinical plasma application

Antiseptic treatment of infected cancer ulcerations as part of palliative medicine program

12 patients; advanced squamous cell carcinoma of the head and neck, intraoral or extraoral ulcerations beyond reach of standard cancer therapies

- gently removal of biofilm covering with gauze
- repeated kinpen MED scanning over the area of the ulceration, 1 min/cm²
- 1 cycle: 3 single treatments within 1 week, followed by 1 week intermittence
- 1-9 cycles per patient
- 3-18 Monate clinical follow-up

General results:

- (1) Reduction of microbial load
- (2) Reduction of typical fetid odor
- (3) Decreased request for pain medication in some cases
- (4) Superficial partial remission of tumor
- (5) Wound healing of infected ulcerations

Th. von Woedtke & H.-R. Metelmann, Clin. Plasma Med. 2 (2014) 37

H.-R. Metelmann et al., Clin. Plasma Med. 3 (2015) 17-23

X. Lu et al., Phys. Rep. 630 (2016) 1-84

ROS and RNS in cell physiology

Redox-active plasma components are the same as occur in regular physiological and biochemical processes in the body.

Because its localized and short-term generation by local plasma treatment these substances can be detoxified by processes of regular cell metabolism.

No increased risk of genotoxic effects

Plasma medicine: Risk assessment

No increased risk of genotoxic effects

Clinical experiences and monitoring

.

FROM IDEA TO PROTOTYPE

Plasma treatments in clinical practice

<u>Chronic wounds</u>: Currently, especially in cases where after exhausting all other treatment options, the healing process stagnates

⇒ success rate > 80 %!

H. Uhlemann, Klinikum Altenburger Land; H.-R. Metelmann et al., Am. J. Cosmetic Surg. 29 (2012) 52-56; H.-R. Metelmann et al., Clinical Plasma Medicine 1 (2013) 30-35; L. Hilker, Klinikum Karlsburg –Herz- und Diabeteszentrum

Forthcoming ideas/prototypes (INP)

INP C

Large area treatment: Multijet

Forthcoming ideas/prototypes (INP): Treatment of cavities

Prototype of a cold atmospheric Ar-plasma jet device intended for dental applications based on KINPen technology

Prototype of a flexible catheter-like cold atmospheric Ar-plasma jet device based on kINPen technology

K.-D. Weltmann & Th. von Woedtke, et al., Plasma Phys. Contr. Fusion, submitted

FROM IDEA TO PROTOTYPE

Large area treatments: Flexible surface-DBD

Weltmann et al., Contrib. Plasma Phys. 49 (2009) 631-640; Weltmann et al., Pure Appl. Chem. 82 (2010) 1223-1237; Weltmann & von Woedtke, Eur. Phys. J. Appl. Phys. 55 (2011) 13807; Weltmann et al., Contrib. Plasma Phys. 52 (2012) 644-654; Weltmann et al., IEEE Trans. Plasma Sci. 40 (2012) 2963-2969

FROM IDEA TO PROTOTYPE

Forthcoming ideas/prototypes (INP)

Flexible discharge arrangement (others)

Plasma medicine: summary

- 1. Active components are generated locally and only for the required duration of the application on-site primarily by a physical process.
- 2. Biologically active plasma components are the same as occur in regular physiological and biochemical processes.
- 3. Because of effective cellular redox control, the risk of cold atmospheric plasma application is low, assessable and manageable. Actually, there are no indications for genotoxic effects.
- 4. Cold atmospheric plasma application for wound healing is clinical reality, yet.

Agriculture

Medicine (Plasma)

Decontamination (Hygiene)

Societal challenge: Food contamination

Contaminated Food Causes More Than 3,000 Death Each Year

Bloomberg View | By the Editors
Posted: 10/13/2012 10:46 am EDT | Updated: 10/13/2012 10:47 am EDT

Bloomberg View

Contaminated food sickens 48 million Americans, resulting in more than 3,000 deaths and more than 100,000 hospitalizations each year. That's right: 3,000 deaths.

Hard as this is to believe, it's easy to see how we got here. It starts with the neglect of the Food and Drug Administration, the agency created to ensure the quality of much of the U.S. food supply, which has been starved of funds for decades. Congress gives the FDA about \$1 billion a year for overseeing the bulk of the \$1.2 trillion food industry. That's enough to pay for about 1,100 inspectors, who manage to check only 6 percent of domestic food producers and 0.4 percent of importers each year.

www.huffingtonpost.com/2012/10/13/contaminated-food-deaths n 1962313.html

Plasma agriculture

P. Bourke, D. Ziuzina, D. Boehm, P.J. Cullen, K. Keener, "The Potential of Cold Plasma for Safe and Sustainable Food Production," Trends in Biotechnology 1580 (2018)

N. Puac, M. Gherardi, M. Shiratani, "Plasma agriculture: A rapidly emerging field," Plasma Process. Polym. 15 (2018)

M. Ito, J.-S. Oh, T. Ohta, M. Shiratani, M. Hori, "Current status and future prospects of acricultural applications using atmospheric-pressure plasma technologies," Plasma Process. Polym. 15 (2018)

N.N. Misra, O. Schlüter, P.J. Cullen (Eds.), *Cold plasma in food and agriculture: fundamentals and applications*, Academic Press, (2016).

M. Ito, T. Ohta, M. Hori, "Plasma agriculture," J. Korean Physical Soc. 60 (2012)

Food value chain - Challenges

Procedures of decontamination of food in Germany

INP

procedure/treat-	disadvantage	e.g. product	A Valo				
ment							
nothing	foodborne disease	egg					
water	humid environment	salad					
chemical	residues	drinking water, apples, citrus fruits	Searching for alternative				
temperature/hot steam	quality of products strongly impaired	fish, preserves	technologies:				
high pressure	only without air inclusions, high costs	ham •	 electron beam bacteriophages ("biological weapon") 				
UV/Pulsed Light	heating of the product, shading, high costs	tomatoes	 Innovative Plasma Combination of different 				
PEF (high-intensity pulsed electric field)	reduced product quality, high costs	juices	conventional and new procedures				
Y-radiation	very high costs, hazardous substances (TRGS - Technical Rule for Hazardous Substances)	spices					

FROM IDEA TO PROTOTYPE

Potential of plasma for agriculture

Cold Atmospheric Pressure Plasma:

by electrical means provided transient reactive gas

- No chemicals
 - Short-lived reactive species regenerated from ambient air or water
 - Transient interaction of plasmainduced chemistry for minutes up to days
 - No toxic or environmental harmful residues
- On-demand treatment:
 - Only electricity needed; no other supplies
 - Autonomy for farmers and producers
- Possible Applications:
 - Elimination of harmful microorganisms
 - Degradation of chemical compounds
 - Stimulation and protection of plant biology
 - Improvement of food processing

Plasma-treatment concepts

- Pest control
- Surface modification (hydrophilization)
- Improved germination

- Improved germination?
- Improved growth?

- Improved germination, growth
- Sustaining soil health

Plasma-treatment concepts

Exposure to Plasma-Exposure to Direct Plasma-Exposure **Plasma-treated Water** treated Air PLexc²

- packed bed reactor
 (e gliding arc reactor)
 (e DBD reactor)
- plasma processed air(• ozonation)
- plasma processed water
- pin-to-liquid discharge

Plasma treated air (PTA)

Plasmatorch: PLexc®

A: microwave torch, B: cooling system,,
C: gas inlet, D: microwave power input,
E: gas feed, F: PPA reaction chamber

U. Schnabel, M. Andrasch, K.-D. Weltmann, J. Ehlbeck, Inactivation of Vegetative Microorganisms and Bacillus atrophaeus Endospores by Reactive Nitrogen Species (RNS), Plasma Processes and Polymers **11** (2014) 110.

PPA: Seed decontamination

Treatment of *B. atrophaeus* spores on seeds by PLexc[®] processed air

- *B. atrophaeus* spore reduction on seeds:
 2 to 6 log cfu reductions in 15 min
- temperature of 22 °C maximum

U. Schnabel et al., Plasma Process. Polym. 9 (2012) 569-575; U. Schnabel et al., J. Agricult. Sci. Appl. 1 (2012) 99-105

Selected activities – INP, Food decontamination

inactivation kinetics of microorganisms on apples as a result of treatment with Plexc[®] processed air.

Schnabel U, Niquet R, Krohmann U, Polak M, Schlüter O, Weltmann K-D, Ehlbeck J, 2012. Journal of Agricultural Science and Application 1, 100-106.

Schnabel U, Niquet R, Schlüter O, Gniffke H, Ehlbeck J, 2014. Journal of Food Processing and Preservation, online published (DOI:10.1111/jfpp.12273).

Auxiliary Decontamination Unit - ADU

complete integration of PPA generation

mobile stand alone disinfection system

PPW concept for pilot plant operation

- PLexc² = PLexc with additional plasma stage
- PPA = plasma processed air
- PPW = plasma processed water
- IBC = intermediate bulk container

Sanitation of Fresh-cut Lettuce by PPW - Upscaling

U. Schnabel, M. Andrasch, J. Stachowiak, Ch. Weit, Th. Weihe, Ch. Schmidt, P. Muranyi, O. Schlüter, J. Ehlbeck, "Sanitation of fresh-cut endive lettuce by plasma processed tap water (PPtW) – Up-scaling to industrial level," Innovative Food Science and Technology in print.

Sanitation of Fresh-cut Lettuce by PPW - Upscaling

U. Schnabel, M. Andrasch, J. Stachowiak, Ch. Weit, Th. Weihe, Ch. Schmidt, P. Muranyi, O. Schlüter, J. Ehlbeck, "Sanitation of fresh-cut endive lettuce by plasma processed tap water (PPtW) – Up-scaling to industrial level," Innovative Food Science and Technology in print.

Microbiological results of pilot plant trial

- \rightarrow inactivation of up to 2 log steps for fresh-cut salad possible
- → clear limit for pilot plant trials: no controlled room temperature, no hygienic management

Conclusions (Agriculture)

- NO-dominated plasmas provide efficient means for the indirect treatment of seeds with plasma treated air (PPA)
- In addition to an effective decontamination can Reactive Nitrogen Species effectively stimulate biochemical responses resulting in an increased stimulation of germination (and growth) for suitable treatment parameters
- For seeds of already high germination rates are atmospheric pressure plasmas a potential replacement for chemical treatments

FROM IDEA TO PROTOTYPE

Summary

There is no life science today without PLASMA Physical Applications

- Innovative and promising application fields: hygiene (decontamination), agriculture, medicine
- Gentle and effective treatment of different materials and surfaces: radiation and heat sensitive materials and devices; seed, food and food products; living tissue
- Customization according to special product and process characteristics, demands, geometries
- On-demand treatment: electricity and in some cases gas supply needed; no other supplies, e.g. chemicals

FROM IDEA TO PROTOTYPE

Requirements for technological breakthrough

Reliable plasma sources are the key issue for the development of new technologies and applications, but need to be **fully characterized**.

K.-D. Weltmann & Th. von Woedtke, et al., Plasma Phys. Control. Fusion 59 (2017) 014031

Contact

Leibniz Institute for Plasma Science and Technology Prof. Dr. Klaus-Dieter Weltmann

Address: Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany Phone: +49 - 3834 - 554 310, Fax: +49 - 3834 - 554 301 E-mail: weltmann@inp-greifswald.de, Web: www.leibniz-inp.de