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We applied LLE algorithm (𝑘𝑜𝑝𝑡 = 12) to our sample of 3720 quasars described by

ten spectral parameters (Table 1). Output dimension was chosen to be three (𝑛 =
3) in order to have a visual representation of the resulting space.

The E1 parameter space was first described using the Principal Component

Analysis (PCA), which is considered to be a linear dimensionality reduction

technique. It was repeatedly demonstrated that PCA is an extremely useful tool for

finding meaningful linear relationships in high-dimensional data sets, but it has its

shortcomings when applied to inherently non-linear data sets (e.g. galaxy spectra).

Manifold learning techniques address this problem by taking into account the non-

linear geometry of the data embedded in the original parameter space when

calculating low-dimensional projection of that data. The main motivation behind this

contribution is to take advantage of manifold learning methods in order to improve

our understanding of the quasar main sequence and reveal the information that is

potentially lost in the optical plane of the E1 parameter space.

Sample selection:
We selected a sample of low-redshift (z < 0.39) type-1 quasars from the Sloan

Digital Sky Survey Data Release 7 quasar catalog (Shen, et al., 2011). The sample

contained only objects with measured spectral properties possibly relevant to E1

parameter space (Hα, Hβ, [O III] λ5007 Å, optical iron and continuum luminosity).

LLE algorithm can be very sensitive to outliers, so we removed those from E1

optical plane by eliminating low density regions which were identified using kernel

density estimation (e.g. Silverman, 1986), leaving us with the final sample of 3720

objects.

Parameter selection for LLE:

The LLE algorithm requires only one free parameter – the number of nearest

neighbors (𝑘). The algorithm uses this parameter to learn the local geometry of the

manifold. In order to select optimal value for 𝑘 we calculated a matrix of pairwise

geodesic distances of the original parameter space, as well as of the resulting low-

dimensional parameter space. Next, we compared the matrices using the modified

RV coefficient (Smilde, et al., 2008). This process was repeated for each value of 𝑘
in the range 4 ≤ 𝑘 ≤ 30 and the optimal value was found to be 𝑘𝑜𝑝𝑡 = 12, the one

with the highest value of the RV coefficient.

Quasars are extremely luminous objects powered by accretion of matter onto a

supermassive black hole located in their center. The last three decades of research

related to spectral properties of type 1 quasars have revealed that they occupy a

specific parameter space, the so-called Eigenvector 1 (E1) (Boroson & Green,

1992; Sulentic, et al., 2000), where they form an elbow-shaped main sequence

(MS), analogous to the MS of stars in the H-R diagram. Sulentic et al. (2000) have

shown that E1 parameter space could be used to distinguish between different

spectral populations of type 1 quasars, namely populations xA, A and B, based on

the Hβ line width (FWHM) and the strength of the iron line - the two of four spectral

parameters describing E1 (Fig. 1). It is believed that the potential driving

mechanism behind the quasar MS, and thus the physical reason behind the need

for definition of populations, is the Eddington ratio convolved with the line-of-sight

orientation of the source (Marziani, et al., 2001; Shen & Ho, 2014). We propose an

improvement to the interpretation of quasar spectral diversity by applying manifold

learning technique called locally linear embedding – LLE (Roweis & Saul, 2000) in

the context of E1 parameters.

Input parameters

Broad Hα (FWHM, EW, L)

Broad Hβ (FWHM, EW, L)

[O III] λ5007 (EW, L)

log 𝐿5100

RFeII =
EW FeII

EW Hβ

Table 1. Input parameters

for the LLE algorithm.

Figure 1. Optical plane of the E1 parameter space for our sample with outliers removed. Iron

strength (RFeII) is indicated on the horizontal axis and represents the equivalent width ratio of

optical Fe II and broad Hβ emission lines. Vertical axis presents the width of the broad Hβ line.

Different spectral populations of quasars are indicated with different colors. The main

sequence direction is indicated with an arrow.

EW – equivalent width;

L – luminosity.

After applying the algorithm,

we have obtained a 3D space

where different quasar

populations occupy distinct

regions in accordance with

their spectral differences (top

panel of Fig. 2.). Please note

that LLE provides us with a 3D

projection of original ten-

dimensional space where the

relationships between the

points are close to their

relationships from the original

space, which is not necessarily

the case with linear

dimensionality reduction

methods (e.g. PCA). In this

way, we tend to retain as much

information as possible

(including information about

non-linear relationships) while

lowering the number of

dimensions. In addition, we

can use these projections to

follow variations of different

physical parameters and

identify which ones are

correlated with the MS (bottom

panel of Fig. 2).

Figure 2. 3D projection of the original manifold

embedded in ten-dimensional space. Axes are in

arbitrary units and correspond to three components of

LLE decomposition. Top – populations xA, A and B are

marked with blue, red and green, respectively. The

arrow points in the direction of the MS. Bottom -

gradient of the Eddington ratio in the resulting

projection.

Our preliminary findings are outlined below:

• LLE may be used as a tool in data exploration and identification of objects with

distinct spectral properties, potentially aiding future type 1 quasar classification

tasks in large spectroscopic surveys.

• It is possible to find three eigenvectors giving projection in 3D that contains

information potentially lost in 2D projection.

• Presence of quasar MS driven by Eddington ratio was confirmed in a space with

maximum preservation of the original manifold geometry.


