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1 Radial part of the Schrödinger equation
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After introducing a new functions R(r) = P (r)/r, Ṽ (r) = V (r) +
(ℏ2/2m)(l(l + 1)/r2), simplifies the form of the radial part
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1.1 Numerov method for radial Schrödinger equation
The Numerov method for 2 uses a Taylor expansion of the differential
equation is used. If analyzig q(r) = Ṽ (r) − E, the equation P ′′(r) =
q(r)P (r) is solved. The Taylor expansion is valid for the linear mesh,
e.g. ri = i ∗ h, where P (ri) ≡ Pi and q(ri) ≡ qi :
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where P
(n)
i ≡ dn

drnP (ri). The first order differential is given by
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In order to avoid the problems related to the accumulation of the numer-
ical error a new variable is introduced, x = x(r), dx = x′(r)dr. For the
logarithmic grid a function is given by

x(r) = log
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a0

)
, ∆x =

a0
Zr

δr. (5)

in order for system to be solvable by a Numerov method on a differ-
ent grid xi = x0 + h ∗ i. In a case of logarithmic grid a function
y(x) = P (r(x))/

√
r(x) neutralizes the first order differential and pre-

serves a form of differential equation y′′(x) = q(r(x))y(x), solvable by
a Numerov method.
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2 Test procedure and results
The analysis is performed using the Coulomb potential, e.g. the solution
are for the hydrogen atom without the influence of the plasma, since the
stability is expected to be the same with more complex pseudo potentials
and the Coulomb one have an analytical and known solutions. As it is
known, the convergence of the potential and physical meaning of the wave
function led to asymptotic solutions used for the initial values of the nu-
merical solution presented by

R(r)|r→0 ∼ rl, P (r)|r→0 ∼ rl+1, (7)

and for the large values of r

R(r)|r→∞ ∼ rn−1 exp
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(8)
With the help of varying parameter ε the second bond value in both in-

ward and outward integration is varied, mathematically could be presented
as

F0 = F0, FNEW
1 = k ∗ F1, FN = FN , FNEW

N−1 = k ∗ FN−1,

F ≡ [R(r), P (r)] k = (1 + ε), ε ∈ (−1, 1)
(9)

In this analysis a parameter ε took values [−0.1, −0.05, −0.01, −0.005,
−0.001, 0, 0.001, 0.005, 0.01, 0.05, 0.1]. All of these parameter values, in
exception of −0.1, that are smaller or equal to 0, led to the same energy
values with the relative error smaller than 10−5. In the case of the smallest
values for ε > 0 the result yields a lower energy state, otherwise the nu-
merical solution will be colapsed. The accuracy of the numerical procedure
could be seen on Figure 1.
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Figure 1. The absolute relative error of energy determination using
Numerov method logarythmic grid numerical solution for radial part of
Coulomb potential.

3 CONCLUSION
The numerical integration method, particularly the Numerov type integra-
tion method with logarithm and 1/r3 grid could be used for solving of
model potential of dense hydrogen plasma, Havlová et al., 1984. The anal-
ysis of the stability of the solution with the initial values on the Coulomb
potential led us to conclusion that the model is also usable for cut-off
Coulomb model potential. The method possesses fast convergence toward
to a solution, and is very applicable when using it in more complex anal-
ysis, as well as for coupling with molecular dynamics codes. Even more,
it gave an opportunity to solve more complex model potential to describe
different atoms in dense plasma. The further analysis is needed for avid-
ing of numerical errors in solution, as well as to optimize for a best mesh
densities selection.
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