ANALYTICAL FORMULISM FOR THE OUTPUT FACTOR CALCULATION OF SMALL RADIATION BEAMS

SAED J. Al ATAWNEH ${ }^{1}$, LINA M. ABU-ARIDA ${ }^{2}$, and K. TÖKÉSI ${ }^{1}$
${ }^{1}$ Institute for Nuclear Research, ATOMKI, Debrecen, Hungary, EU
${ }^{2}$ Al-Balqa Applied University, Faculty of Science, AL SALT, Jordan

The motivation

Determination of the corrected Output Factor (OF) for the multileaf collimator (MLC) and regular Jawshaped radiation beams.
The Output Factor (OF) has been extensively studied in recent decades. In most cases, MLC-Collimator was used. For corrected OF results, the Analytical Formula was figured out for different MLCcollimators starting from large filed size down to zero filed size, OF is a very important factor for mounter unit (MU) calculation, machine output, that used in Radiation therapy.

The Experiment Setup

In the experiment, the Water phantom was placed in such way that the surface to source distance (SSD) was 100 cm from the radiation source (medical linear accelerator). The ion chamber is set up within the phantom such that its axis should always be parallel to the beam central axis (CAX), and the center of the ionization chamber assumed to be located at the depth of $10 \mathrm{~cm}(\mathrm{~d}=10 \mathrm{~cm})$. This depth was kept constant while changing the field size of the photon beam for each measurement. Readings for the OF were taken for field sizes $10 \times 10 \mathrm{~cm}^{2}$ down to $1 \times 1 \mathrm{~cm}^{2}$ for both collimators shapes, the MLC-shaped fields with constant jaw-opening of $10 \times 10 \mathrm{~cm}^{2}$ and Jaw-shaped fields only. Readings were normalized to the reference field size of $10 \times 10 \mathrm{~cm}^{2}$.

The relative position of the medical linear accelerator (Linac) to water phantom

Analytical Formula Standard Deviation

$$
\left.O F\right|_{\mathbb{B}}=\overline{a_{0}}\left|\mathbb{E}+\overline{a_{1}}\right|_{\mathbb{E}} * \text { Field size } \quad S D_{a_{0}}=\frac{\sum\left(a_{i}-\overline{a_{0}}\right)^{2}}{N-1}
$$

$\left.\overline{a_{0}}\right|_{E},\left.\overline{a_{1}}\right|_{E}$. are the average value of fitting parameters over different ion chambers and $S D$ is a standard deviation

Experiment Validation for Pinpoint Ion chamber

Experiment Validation for Semiflex Ion chamber

CONCLUSION

In conclusion, we found that the Analytical Formula could be utilized to calculate the output factor for the linear accelerator, Elekta (Synergy Platform model number (151150)), that undergoes VMAT and IMRT treatment techniques precisely, and also its strongly recommended to use for the commission data in case the small detectors such as pinpoint, micro-diamond, or even diode detectors do not achievable to use.

The Output Factor measurements at $\mathbf{6 M e V}$ Photon beam

Pinpoint Ion chamber

Semiflex Ion chamber

Farmer Ion chamber

The Analytical formula for output factor was verified and compared with measured data for both of MLC and Jaw-shaped beams.

Experiment Validation for Farmer Ion chamber

