ON THE TEMPERATURE DEPENDENCE OF STARK WIDTHS

Zlatko Majlinger ${ }^{1}$, Milan S. Dimitrijević ${ }^{1}$ and Vladimir A. Srećković ${ }^{2}$
${ }^{1}$ Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia, zlatko.majlinger@ gmail.com ${ }^{2}$ Institute of Physics Belgrade, University of Belgrade, P.O.Box 57, Pregrevica 118, Belgrade, Serbia

- Several temperature dependence on Stark widths have already been investigated (Elabidi et al 2009, Sahal-Bréchot et al. 2011, Elabidi and Sahal-Bréchot, 2011) on the sample of Stark widths obtained by semiclassical perturbation method (SCF, Sahal-Brechot, 1969a,b) :
- $W_{\text {Stark }} \sim 1 / \sqrt{ } T$ (valid below lower temperature threshold)
- $W_{\text {Stark }} \sim \ln T / T$ and $W_{\text {Stark }} \sim \ln T / \sqrt{ } T$ (valid above upper temperature threshold)
- We wanted to check if the same temperature dependences are valid for the sample of Stark widths obtained by modified semiempirical method (MSE, Dimitrijević and Konjević, 1980)
- We investigated temperature dependences in three different general forms of log-log linear correlations:
- A) $\log \mathrm{W}_{\text {MSE }}=\mathrm{C}_{11} \log \mathrm{~T}+\mathrm{C}_{21}$
- B) $\log \mathrm{W}_{\mathrm{MSE}}=\mathrm{C}_{21} \log (\ln \mathrm{~T} / \mathrm{T})+\mathrm{C}_{22}$
- C) $\log \mathrm{W}_{\mathrm{MSE}}=\mathrm{C}_{31} \log (\ln \mathrm{~T} / \sqrt{ } \mathrm{T})+\mathrm{C}_{32}$
- All available Stark widths calculated by MSE approach (STARK-B database, http://stark-b.obspm.fr/, Sahal-Brechot et al. 2014, Sahal-Brechot et al. 2015a,b, Dimitrijević and Konjević, 1981) was analysed (temperature range between 10000 and 80000 K is covered).
- Although all of three linear correlations A, B and C fit very well to our investigated sample, in the case of B slope coefficient is almost constant for all considered Stark widths, $\mathbf{C}_{21} \approx \mathbf{0 . 4}$, so the new temperature dependence is found:

$$
W_{s t a r k}(T) \propto\left(\frac{\ln T}{T}\right)^{2 / 5}
$$

- We tried to prove the validity of new temperature function on simplified modified semiempirical formula (SMSE, Dimitrijević and Konjević, 1987) as a special case of MSE formula when condition of lower temperature threshold is satisfied, e. g. when adiabatic and elastic collisions of radiators and perturbers in high temperature plasma overcome.

Simplified modified semiempirical (SMSE) formula for Stark width calculation

$$
\begin{gathered}
W_{S M S E}=2.2155 \cdot 10^{-24} \cdot \lambda^{2} N\left(0.9-\frac{1.1}{Z}\right) \text { foLD }(T) \sum_{j=i, f}\left(\frac{3 n_{j} *}{2 Z}\right)^{2}\left(n_{j} *^{2}-l_{j}^{2}-l_{j}-1\right) \\
f_{O L D}(T)=\frac{1}{\sqrt{T}} \quad x=\frac{E}{\Delta E_{ \pm}} \quad E=\frac{3 k T}{2} \\
\Delta E_{ \pm}=\left|E_{j}-E\left(l_{j} \pm 1\right)\right| \quad n_{j}^{* 2}=\frac{Z^{2} E_{H}}{E_{\text {ion }}-E_{j}} \quad j=i, f
\end{gathered}
$$

$W_{\text {SUSE }}$ is Stark width in \AA, λ wavelength in \AA, N - perturber density in cm^{-3}, E - average perturber energy, T - temperature in K, Z 1 is ionic charge, n_{j}^{*} - effective principal quantum number for level j, and l_{j} - orbital quantum number for level $j, j \in\{i, f\}$. Letters i and f stand for initial and final state respectively, $E_{H}-$ hydrogen atom energy, $E_{i o n}$ - ionization energy, and E_{j} - energy of j th level. $E(l, \pm 1)$ the energies of perturbed levels with orbital number $l+1$ e.g. $l,-1$ are signed, and k is Boltzmann's constant

- We determined the constant of proportionality C for the new temperature function:
from the condition

$$
f_{N E W}(T)=C\left(\frac{\ln T}{T}\right)^{2 /}
$$

$$
f_{\text {oLD }}\left(T_{x}\right)=f_{\text {NEW }}\left(T_{x}\right)
$$

where T_{X} is temperature for $\underline{x=2}$ (lower temperature threshold condition is satisfied for $x \leq 2$)

- T_{X} is found from least square error function

$$
\operatorname{LSE}\left(T_{x}\right)=\min _{c} \sum\left(f_{\text {NEW }}\left(T_{i}\right)-f_{\text {oLD }}\left(T_{i}\right)\right)^{2}
$$

resulting with critical temperature $T_{X}=7500 \mathrm{~K}$ and corresponding $C_{X}=0.17072$ obtaining a new formula (NF) for Stark width estimate:

$$
W_{N F}=3.7823 \cdot 10^{25} \cdot \lambda^{2} N\left(\frac{\ln T}{T}\right)^{2 / 5}\left(0.9-\frac{1.1}{Z}\right) \sum_{j=f, f}\left(\frac{3 n_{j}{ }^{*}}{2 Z}\right)^{2}\left(n_{j} *^{2}-l_{j}^{2}-l_{j}-1\right)
$$

Some of the best results of comparison of NF values with theoretical values

$\begin{gathered} \mathrm{Lu} \text { II } \\ \lambda=2782.0 \AA \\ 6 \mathrm{~d}^{2} \mathrm{D}_{512}-6 \mathrm{f}^{2} \mathrm{~F}_{515} \end{gathered}$	Thk	$\mathrm{W}_{\mathrm{HI}[}\left[\mathrm{A}_{\text {] }}\right]$	$\mathrm{W}_{\text {smse }}[$ A $]$	$\mathrm{W}_{\text {HIF }} / W_{\text {Mse }}$
	10	0.2914	0.2796	1.1
	20	0.2274	0.1977	1.21
	50	0.1633	0.1250	1.17
	100	0.1269	-	0.89
$\begin{gathered} \mathrm{Lu} \text { II } \\ \lambda=2722.5 \AA \\ 6 \mathrm{~d}^{2} \mathrm{D}_{\mathrm{s} 2}-6 \mathrm{f}^{2} \mathrm{~F}_{712} \end{gathered}$	TkK	$\mathrm{W}_{\mathrm{HF}[}\left[{ }_{\text {ar }}\right]$	Wsmse[${ }^{\text {a }}$]	$W_{\text {HIF }} / W_{\text {MSE }}$
	10	0.2771	0.2659	1.1
	20	0.2162	0.1880	1.21
	50	0.1553	0.1189	1.17
	100	0.1206	-	0.88

Comparison of NF values with experimental values:

Conclusion

- Our NF can approximate MSE results in the reasonable tolerance of accuracy when x is in range from 0.2 to 10 , where best accuracy is expected for x from 0.2 to 0.35 , from 5.5 to 7 and around 10 , while in other subranges of x we can expect less accuracy, but mostly not lesser than 50%.
- Concerning about transitions, our NF could be acceptable approximation in the cases of ns-np and np-(n+1)s types of transtions, and particularly when np-nd and (n-1)dnp are considered, if $\mathrm{n}=4$, which is confirmed with comparison of results calculated with NF and experimental results.
- Our suggested new temperature function is found to follow original MSE results in the range from 10000 K to 80000 K mostly with acceptable accuracy, even when higher temperatures are used.

