Šabac, Serbia, August 24-28, 2020 **30th SPIG**

ON THE TEMPERATURE DEPENDENCE OF STARK WIDTHS

Zlatko Majlinger¹, Milan S. Dimitrijević¹ and Vladimir A. Srećković² ¹Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia, zlatko.majlinger@gmail.com ²Institute of Physics Belgrade, University of Belgrade, P.O.Box 57, Pregrevica 118, Belgrade, Serbia

- Several temperature dependence on Stark widths have already been investigated (Elabidi et al 2009, Sahal-Bréchot et al. 2011, Elabidi and Sahal-Bréchot, 2011) on the sample of Stark widths obtained by semiclassical perturbation method (SCF, Sahal-Brechot, 1969a,b):
- $W_{Stark} \sim 1/\sqrt{T}$ (valid below lower temperature threshold)
- $W_{\text{Stark}} \sim \ln T / T$ and $W_{\text{Stark}} \sim \ln T / \sqrt{T}$ (valid above upper) temperature threshold)
- We wanted to check if the same temperature dependences are valid for the sample of Stark widths obtained by modified semiempirical method (MSE, Dimitrijević and Konjević, 1980)
- We investigated temperature dependences in three different general forms of log-log linear correlations:
- A) $\log W_{MSE} = C_{11} \log T + C_{21}$ • B) $\log W_{MSE} = C_{21} \log (\ln T/T) + C_{22}$ • C) $\log W_{MSE} = C_{31} \log (\ln T/\sqrt{T}) + C_{32}$

Simplified modified semiempirical (SMSE) formula for Stark width calculation

$$\begin{split} W_{SMSE} &= 2.2155 \cdot 10^{-24} \cdot \lambda^2 N (0.9 - \frac{1.1}{Z}) fold(T) \sum_{j=i,f} \left(\frac{3n_j^*}{2Z} \right)^2 (n_j^* - l_j^2 - l_j - 1) \\ f_{OLD}(T) &= \frac{1}{\sqrt{T}} \qquad \qquad x = \frac{E}{\Delta E_{\pm}} \qquad \qquad E = \frac{3kT}{2} \\ \Delta E_{\pm} &= \left| E_j - E(l_j \pm 1) \right| \qquad \qquad n_j^* = \frac{Z^2 E_H}{E_{ion} - E_j} \qquad \qquad j = i, f \end{split}$$

 W_{SMSE} is Stark width in Å, λ wavelength in Å, N – perturber density in cm⁻³, E – average perturber energy, T – temperature in K, Z-1 is ionic charge, n_i^* - effective principal quantum number for level *j*, and l_i - orbital quantum number for level *j*, *j* \in { *i*, *f*}. Letters *i* and *f* stand for initial and final state respectively, E_H – hydrogen atom energy, E_{ion} – ionization energy, and E_i – energy of *j*th level. $E(l_i \pm 1)$ the energies of perturbed levels with orbital number $l_i + 1$ e.g. $l_i - 1$ are signed, and k is Boltzmann's constant

• We determined the constant of proportionality C for the new temperature function:

$$C_{NEW}(T) = C \left(\frac{\ln T}{T}\right)^{2/5}$$

from the condition

$$f_{OLD}(T_X) = f_{NEW}(T_X)$$

- All available Stark widths calculated by MSE approach (STARK-B database, http://stark-b.obspm.fr/, Sahal-Brechot et al. 2014, Sahal-Brechot et al. 2015a,b, Dimitrijević and Konjević, 1981) was analysed (temperature range between 10000 and 80000 K is covered).
- Although all of three linear correlations A, B and C fit very well to our investigated sample, in the case of B slope coefficient is almost constant for all considered Stark widths, $C_{21} \approx 0.4$ so the <u>new temperature dependence is found</u>:

$$W_{Stark}(T) \propto \left(\frac{\ln T}{T}\right)^{2/5}$$

- where T_x is temperature for $\underline{x=2}$ (lower temperature threshold condition is satisfied for $x \le 2$)
- T_X is found from least square error function $LSE(T_X) = \min_{C} \sum_{i} \left(f_{NEW}(T_i) - f_{OLD}(T_i) \right)^2$

resulting with critical temperature $T_x = 7500$ K and corresponding $C_x = 0.17072$ obtaining a <u>new formula (NF) for Stark width</u> estimate: $(2 \times)^2$ > 2/5

$$W_{NF} = 3.7823 \cdot 10^{-25} \cdot \lambda^2 N \left(\frac{\ln T}{T}\right)^{2/5} (0.9 - \frac{1.1}{Z}) \sum_{j=i,f} \left(\frac{3n_j^*}{2Z}\right) (n_j^* + l_j^2 - l_j^2$$

Some of the best results of comparison of NF values with theoretical values

	T/kK	W _{NF} [Å]	W _{SMSE} [Å]	W _{NF} / W _{MSE}		T/kK	W _{NF} [Å]	W _{SMSE} [Å]	W _{NF} / W _{MSE}
Zr IV	10	0.0104	0.0099	1.05	Lu III	10	0.2910	0.2792	1.08
	20	0.0081	0.0070	1.15	λ=2801.7 Å	20	0.2270	0.1974	1.19
λ=760.16 Å	50	0.0058	-	1.2	6d ² D _{3/2} – 6f ² F° _{5/2}	50	0.1630	0.1249	1.16
	100	0.0045	-	1.24	0d-D3/2-01-F-5/2	100	0.1267	-	0.88
5s ² S _{1/2} – 6p ² P _{1/2}	200	0.0035	-	1.15		1			1
	300	0.0029	-	0.97		T/kK	W _{NF} [Å]	W _{SMSE} [Å]	W _{NF} / W _{MSE}
	500	0.0024	-	0.81	Lu III	10	0.2914	0.2796	1.1
L	1				λ=2782.0 Å	20	0.2274	0.1977	1.21
	T/kK	W _{NF} [Ă]	W _{SMSE} [Å]	W _{NF} / W _{MSE}	6d ² D512 - 6f ² F°512	50	0.1633	0.1250	1.17
Zr IV	10	0.0104	0.0099	1.01	00-D20-01-L-20	100	0.1269	-	0.89
	20	0.0081	0.0070	1.1			·	1	1
λ=754.39 Å	50	0.0058	-	1.24		T/kK	W _{NF} [Å]	W _{SMSE} [Å]	W _{NF} / W _{MSE}
	100	0.0045	-	1.24	Lu III	10	0.2771	0.2659	1.1
5s ² S _{1/2} – 6p ² P _{3/2}	s ² S _{1,2} - 6p ² P _{3,2} 200 0.0035 -		-	1.08	λ=2722.5 Å	20	0.2162	0.1880	1.21
	300	0.0029	-	0.95	6d ² D _{5/2} -6f ² F° _{7/2}	50	0.1553	0.1189	1.17
	500	0.0024	-	0.81	04 103/2 01 1 //2	100	0.1206	-	0.88

Comparison of NF values with experimental values:

Ion		Transition	λ[Α]	T[K]	N[cm]]	W _{EXP} [A]	$W_{NF}[A]$	W _{NF} /W _{EXP}
С	$ \vee $	3s²S-3p²P⁰	5812	15700	1.45	0.964	0.91122	0.94525
С	$ \vee $	3s²S-3p²P⁰	5812	17000	1.87	1.154	1.1421	0.98968
С	$ \vee $	3s²S-3p²P⁰	5812	17800	1.96	1.084	1.1775	1.0862
С	$ \vee $	3s²S-3p²P⁰	5812	18300	1.82	1.074	1.0825	1.0079
С	$ \vee $	3s²S-3p²P⁰	5812	19000	1.66	1.042	0.97413	0.93487
С	$ \vee $	3s²S-3p²P⁰	5812	19500	1.44	0.762	0.83718	1.0987
С	$ \vee $	3s²S-3p²P⁰	5812	19800	1.37	0.735	0.79212	1.0777
С	$ \vee $	3s²S-3p²P⁰	5812	20300	1.25	0.694	0.71629	1.0321
С	$ \vee $	3s²S-3p²P⁰	5812	72400	0.58	0.229	0.20973	0.91586
С	$ \nabla $	3s²S-3p²P⁰	5812	78300	0.76	0.304	0.26709	0.87857
AI		3d²D-4p² P⁰	3605.2	50000	64	8.5	16.185	1.9042
AI		3d²D-4p² P⁰	3605.2	50000	97	25	24.531	0.98125
AI		3d²D-4p² P⁰	3605.2	50000	104	26.5	26.301	0.99251
AI		3d²D-4p² P⁰	3605.2	50000	119	29	30.095	1.0378
AL		3d²D-4p² P⁰	3605.2	50000	133	32	33.635	1.0511
Mg	II	3s²S-3p²P⁰	2795.5	13000	1.18	0.12	0.077886	0.64905
Mg	II	3s²S-3p²P⁰	2795.5	12970	1.1	0.048	0.072666	1.5139
Mg	II	3s²S-3p²P⁰	2795.5	14260	1.64	0.077	0.10472	1.36
Са	II	4s²S-4p²P⁰	3933.7	13000	1.08	0.235	0.25322	1.0775
Са	II	4s²S-4p²P⁰	3933.7	43000	1.76	0.286	0.26818	0.9377
Рb	II	6d ² D-5f ² F°	4386.5	24000	11	7.7	3.358	0.4361
Рb		6d²D-5f²F⁰	4386.5	27000	1.62	0.51	0.47397	0.92936

• We tried to prove the validity of new temperature function on simplified modified semiempirical formula (SMSE, Dimitrijević and Konjević, 1987) as a special case of MSE formula when condition of lower temperature threshold is satisfied, e.g. when adiabatic and elastic collisions of radiators and perturbers in high temperature plasma overcome.

Conclusion

- Our NF can approximate MSE results in the reasonable tolerance of accuracy when x is in range from 0.2 to 10, where best accuracy is expected for x from 0.2 to 0.35, from 5.5 to 7 and around 10, while in other subranges of x we can expect less accuracy, but mostly not lesser than 50%.
- Concerning about transitions, our NF could be acceptable approximation in the cases of ns-np and np-(n+1)s types of transitions, and particularly when np-nd and (n-1)dnp are considered, if n = 4, which is confirmed with comparison of results calculated with NF and experimental results.
- Our suggested new temperature function is found to follow original MSE results in the range from 10000 K to 80000 K mostly with acceptable accuracy, even when higher temperatures are used.